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C presente trabalho tem por finmlidade um cotude cooparative das diversas mo-
dalidedes de uwn métode de aproximagie utilizeds en teoris guantica dos CREPOS ,
conheeido  como Hétede Tanm-Dancoff. Tal estudo serd principalmente desenvolwido
atraves de codelos séluveis da teorin dos coupos, posasibilitande une compreenafo
mais clera das relagoes, vontagens e desvantagens dos diversos métodos em ques -
tEo.

iplicande o método Tamm-Dancoff & cuitos tewpes, originalmente empregade por
Heisenberg e eua teoria unificada, £ teoria mesenics convencional, =ostraréncs
qua gregoo & covariancia explicitn deste foroalisso serdi possivel introdusir u=a
téenice de renormalizaghe livre das dificuldades presentos nos sétodo £ um tempo.

Exexinaremos a possibilidade de eliminar os divergencics de voluue, ,ligedas
& processos de flutungic de vacuo, que apareces no 'velho' witode Tamm-Dancoff
nio 86 por meio do 'movo' nétodo como também atrevéz de ume wodificagds do siste
aa de equagdes correspondente. mo ‘velho' método. i conexfo cotre estas dimg_-i&
cizs o o teoresn de Hosg ser: eatabelecida. /nalisareses nis nodéle soluvel o
cozportenentoe dos ‘velhas' ¢ 'novas' amplitudea quende o nimero de operaderes
tende para infinito, obtendo o resultodo de que co controric dos 'velhas' as
‘novas' smplitudes ndo tenden & zero neste lizite, o quo & o indicagio de que
a2s 'novas' aproximagoes ndo convergen 28 solucdes exctes dnnds ne aelhor dos
hipoteses = método assintético.

ia dificuldades encontrodos pelos sétodos & un teopo no ealeulo de oute-valo-
res ao toorias unificadam do tipo da teoria de Heisenberg serio cstudades por
zeio de dois modelos scluveis proporcioncnde wmn compreensio -ais clara do signi
ficedo fisico destas dificuldodes ¢ 2 nancirs de elizina-los. -

Concluirenos que o wétode & muitos teupos, =do obstente sua provavel niio con-
vergencin parc as solugdes cxotas, pussue vantogens bes definidas sobre os daais
versoes do wdtodo Tmm-Dancoff nio 86 nz sus aplicngio & teorics divergeates em
virtude de sun renormaliznbilidade como tamben & teories unificadas finitas onde
sau carfiter nuto-conaiatente leva, peolo menos oo baixos crdens de aproximagno, i

volores onis corretos pora os nossns dog anrticulns descritos por estos toorias.
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I- INTRODUGAD
1- RESENHA _HISTORICA

Apos o extraordinirio.sucesso da elegtrodinamica quantica na explicagao de
efeitos cbervaveis com o auxilio das técnicas de renormalizagac, grandes esfor
gos foram gastos em tentativas de aplicar o formalismo dos cempos quantizcdos l
fisica dos mesons. Fol contuds loge percebide, que em virtude do grande valer
da constente de ocoplamente meson-nucleon, qualquer metods baseado nusa expan -
sao em seérie do pntinti,.l: desta constante (teoria de perturbacies), cstove des-
tinado & falhar nas predigdes quantitativas. Iste serviu de estinulc pars a pes
quisa de métodos de sproximagiic nio perturbatives, levands ao desenvolvimento
entre cutres do métode Tacm-Dancoff {H.T.Eh]'“ il}‘_ ¢ mais recentemente a traba=
lhos boaseados em relagies de dup-r-i.um:'n representagis de ll.umlnl:tnn“'].

Seguinds um brove periodo de pesquisa qﬂ.““'”ﬂ M.T.D. foi praticosente
abandonado pelos especialistas em teoris de mesons, em virtude de um nimerc de
dificuldedes inerentes, om particular a auséncia de um processo de rencraaliza-
gio satisfatord u"]

Nus campo d:i.hrﬂntllﬁﬂntudn. um nove interesse esta sendo dado o M.T.D. es=
pecialmente através dos trabalhss de Heisenberg e -:-:r-mtm.[”-hﬂ a teoria
spinorial das particulas elesentares. Tomands uma equagio para um campo de api-
nores fundasental, do tipe

e
i i‘?*“lw PFY¥)Fy¥ao (1.1}
ende P ' & uma combinagio invariante formada de matizes de Dirac, as mnssas das
diferentes particulss elementares sio supostos devidas & efeitos de auto-inters
¢&¢ do compo fundsmental. O fato de que lé a Gnica constante dimensisnnl da teo
rin exelui g ;p:rhrl. qualquer tipo de esquesa perturbative no edleulo das quanti
dades cbserviveis, jA que uma masss ndc nule dada pela teoria seri forcosamente
da forma m = of/f , onde "a" @ um numerc puro, Estas masens doven sor cnleula -
das por um métods nio perturbativc, no coso o métode Tecm-Dancoff.

Este rencvade interesse no M.T.D. @ o aparecimento de novos problomns ligm-
dos & sua aplicagdo & teorin de Heisenberg constituem a motivagic do presente :
trabalho. Nosso propdaito ¢ o de ilustrar e analisar as diferentos modslidades
conhecidas do M.T.D. atrevis de sus aplicagio & modélos soluveis dn teoris doa
campos, trazends assim ns suns vontagens ¢ desvantagens relatives & ums lus
mais clara.

Bo sun versdo original, conhecids hoje como velho métods Tesm-Dencoff, pro-
posta independentesente por Tomm ¢ Dancoff, procura-se solugies aproxincdns pa
ra os auto-volcres @ autovetores de uma hamiltoniana de compos em interscds,
H=H +H, . ,sediante a expansio dos autovetores de H em térmos de umn bose
formada pelos putc-vetores de H,v Em um dado instante t = t_ podemos sompre ex
pendir nosscs caspos quantizados em termcs de operadorea de eriacic e aniquila
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lagio a’(k),a(k) respectivamente, cbedecendo a regras de comutagio ou antie
ccmutagio [alk),a”(k')]+ = P k-k) , @ introdusindo um vacuo 'bare’ | 0
tal que alk) | 02 = 0 , construimes nossos vetores de base pela aplicagio
sucessiva de operadores de crisgic ao wicuo bars.

Para um auto-sstade arbitraric da hamiltoniana B { eatads fisice) tere =
mos & parte de um fator de normalizagdc e deixande de lado por simplicidade
qualquer indice carsterizands spin, isc-spin o as diferentes partfculas ems
interagao

I £> = 0D [flfkh"[h'.llu}d“k +
*j/fiitlhii.-‘ll’."‘a} Iu g ﬂntlﬁ‘:kz-lﬁu- L tIv’]

onde podemos usar a conservagac do momentum e as regras de selecdos para sim
plificar a forma geral (I.2). 3

Se por exemplc estamos interessados no calculo da energia de uma particu
1a fisica de momentum k, numa teoria que admite a decaimento virtuaml de uma
particula em duas cutras, podemcs escrever

| Lik = a®(k) 0>+ / fale k) (eeky -ky)a" (e, Ja* () 103 6% a0 00
(1.3)

onde a m:inéwut- automaticamonte que [1,k » @ um aute-estads do opera
dor momantum con auto valor K.
Tomands agora & equagas de auto-valores péra a energis

HIlL,k>= E (k) |1,k> (I.4)
onde

o= /w{t]- (K)alk)d™k + i 2
obtemon

* : 3 -
(- wikla' ()| 0> + [ 1,0k kg) (B wilke) )= wilky)) &7 kekyoky) bl

l‘{klj-‘{hzl I‘n‘}dskldlkz # pEssssas = Eiﬂt 111#_':,

donde
3 i I
(B= k) ”tk-k') = < olalk') H,_ |1,k>
(2= wlie]) - wiky)) £, lekg) §0kule k) = 2 0lale dalky) By 1,0

2
(1.7)
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Os térmos & direita do nosso sistesa (I.7) podem ser explicitamente calcula -
dos uma ver conhecide Hi“'[l."'.n}. levando & expressces que noa n-enima equagio
envolven !.'I cem n-ts J cnea onde n depende do tipo de interagde. Desta for-
ma obtem-s¢ um sistema infinito de equagdes integrais geralmente acopladas, o
que chamaremos de velhs sistesa Tamo-Dancoff,

i aproxisagic proposta por estes autores consiste o= ecicear iguais a zero
i.0. negligenciar todap agp I'J com § > H. Desta forsa ficemos coo us sistema
finitc de equagoes integrais que para sequencs wvalores de N pode ser resolvi-
do seja exeta se)a uumericamente.

¢ oetodo medion possul aérins deavantagens na sua aplieaciic & teorias rela-
tivisticapente invorisntes. iléa de nao possuir wmn estrutura explicitamente
ecovariante dificultande a introdugao de um formalisne consistonte de rencrma-
ligsg@o para & elicinagio das divergoncins ultrevicletas, di lugar oo apareci
mento de novas divergencies de wm tipo nAo presente na tecrin de perturbacoes,
as guais dependen do volume infinite do easago. Estas divergénciss de voluoe
nodom sor gualitativosente conprendidas de seguinte seneira:

Numa teorin relativisticamente invarionte a possitilidade de crisgao virty
al de pares £z com que o vicus flsics seja diferante do wicuo 'bere'. A dnva
riancin tronslocional da toorim obrige estes proceosos virtuais & ocorrer com
uniforcidade ea tode o espsge, com duss consequencies principais:

1- Um valor pora a self-energin do vicus preporeiozal me wolime do eapago
(~8%le))

2- A impossibilidade {a nio ser do modo inteiramante foroel) de se usar unm
expanaso de tipe (I1.2) j& que cs estadece flsicos aio na verdade ortogonais
gos estades bape i.s, portencem 4 mm eapogo de Eilbert difersnte. A razfio dia
ta Zato, mateskticaments: relacionadc eow o teoress ds Basg' 220/
tencia de representegoes irredutiveis inequivalentes des relagoes de cosuta -
¢80, pode sor encemtrade ne contribuighc dominmnte de processos de flutuagac
de vicuo envolvendo um nimero arbitrarianente grande de certieuios wirtuais,

o gue faz eum que o probalidade de encontrar um mimmere finite de particulems
ibare' no vacuo fisico (o em cualguer outro emtade fisico) =eja nula.

Antes oenmo que a dificuldade 2 fiare completemente conhecide pelos fisicos
j& a necessidado de eliminsr a solf-energia do vacuo, nsain como o desejo de
ebfer exprocsies -.:i.; explicitamente covariantes para propositos de rencrmali
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sagdo, leveu Dyson' & uaa reformulagie do sbtods Tase-Danesff conhecida como

sohre & exip-

nove 1. Tl

0 algnificade fisico do noo covariancia explicita do welhe método torna-se
elare e fixarmcs por exemple nossa atongic no problema da celf-energic de um
electron ne electrodinkaics quantica, Ha tecris de periurbagies ssta sclf-ener
gla & o= orden mais boixa resultante de Zois efeitos fimicamsate diferentes,
mes trotades de modoe inteircmente simétrico no formalisme covariente: aléa da
e=issfo » subsequente reabssrcio de wm foton virtusl pelo electron, temos tom
bén o subtragio de um processo de flutuagle de vicus que nie pode ccorrer cm
presancs: do alectron inieial (prineipic de Feulil.



Ko velhn M.T.Y. cstes dols procossos correapondos & ordens de nproximacao
diferentes ji que ¢ primeirc eovelve duwas perticulss no satado intermedidrioc
e o segundo quatro, Come conseguencia uma mnzlise grafica de velho métode dara
lupar § diagrgmsa que nic possuem a simetria'para frente pars traz no tempo’

doa diagramas de Foynman da teoria de perturbacces,
0 novo M,T.D, proeura eliminer as dificuldades presentes no velho métoda,

tendo sido formulade por Dyson om térmos das fungdes
J (leyooake Ikfooanokel) = o u'Iu‘[ﬁ!......u‘:::nmkil.....nu:;:lr} {1.8)

: [ Blo* 7= Bl00 >
onde [0' > & o wacuo fisieo com i."
Floyeo

quer de H com H|f>= E|f3;a" (k) e alk) adc os cperadores 'bare’ Aieriagao ®
aniquilagao que vem da expansao des operadores de campo em um dado instante em
integrais de Fourrier,

Ao contrario do que acontece com o vacuo, 'bare' nc velho método, podemos
agora nao somente ‘criar' uma particula’ no vacuo fisico, mas também aniquilar,
ja que tanto a’ (k) |O' = comd alk)|0'> sdo diferentes de zers.

Tomando a série de identidades

@ If_‘} m suto-estade gqual-

-+
E{ul I. {ul]lllii-+{kﬂl'.th£J-Il-i*i-.lk;}Ir }l £ nl|.-+[lilil-ﬂ*i“n:hlkijill

cen(KEIBILY @ L0 TH a* (ky)sourn (e T uked ) e salic? ) T 2o 407 [a Ty ) ens  X,8)

...-tk;l.uju 5= E {_urlu"trﬁl seenlki)IE5 4 £00 [{n'!kl}u.u{u;:l,i!} &N

oI Toemas
(B2 ) P (kyunike Iiaoaket) w00 | [a" k) eunlict) B 25 ¢ (1.10)

: {U'i I:I*{ki : W lﬂ:,k;] IHiﬂt-] |I'}

¢ usando a expressac (I.5) para H_ segue-ge

(2B, (wlif)e,onsalien))e (i Jornns wik D)) Pl ake ) Ixg oo iet) =

i £l
I{u I{ﬂ {k-llilllltk;). “intJ!!} {I.l;]’ ¥
Cs térsos 4 direita de (I.11) apés o calcule explieito dos comutadores pa-
* - . -
ra tl: dfﬂn H, 48" ya) dependerdc de um nimero finito de funcies vizinhas da
fungas a esquerdn, levando novamente oum alatena de infisitas cqungoes intes=
grais acopladas, Come no caso precedente negligenciamds neste sistemn
"f {h}...knlki“.k;] para nsm > N obtonde assiz um sistema aproximade foito on-
de somente a diferenca E = l'n comparece, ¢liminondo-sc nssim o energia de pon=
to zero.
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Quende aplicamos o nove =etode 2o problesm da aelf-snergic de uoa particula
que pode deceir virtualoonte o= duce, tersoce que levar su consideragoes olém
da sepiitode (Gt jalkla(x) |1,k s  toabem o meplitede e 30 e’ (=E)e (=) )1,
k+lz' » na oelen ordec de nproximagso. i priceirs descrevers atraves de seu
accplacento com & msplitude <0 [alksl! ) |1,%4%" % o zrocesse de enissio o -uhu;
.quente resbsorgoc de wue particuls virtusl me pesso cus = ssgunds descrevers :
influéncis da presenga da partfculs inicial sibre s flutusgies do vicuo. Jeg-
t2 foroe estea Cols efeitos sao tratades de unceirs csic sicdtricn que no ve =
iko métods, donde uwma mafer semelhonco estrutersl do oove =3todo oo os forsa-
lismcs covariantes. - '

C método de Dyson possui contude & desvantagen do u-n imgufisiente earactori
ségEb.do vetor bra des auplitudes (I.0) ecoso sendo o vicua fisics. Com ofeite
¢ sistena (I.11) deve admitir sclugdes correspondentes = tougr o vodWR bro co-
Doianco quelquer auto-eatade do baniltoniana totol. Ters eocecificar que este
estodc @ reslmente o vacue fisico condigies subsidiarias sic necesscrics,
Dyscn. sa saus trabo lhn-l“ ﬂnht.ln estas condigfes stravés dn inposicfo de gque
ns eoplitudes nie devem conter cartod palos no exergin que sarscerisc corres -
ponder £ prosessos de produgfc n fisiccs, e que ma verdads serioc indisics de
que o vetar bra néo ¢ o voous fisdco,

Uz putra ponto froco do newe otode que exasisarsiso —cio tarde eeo algus
detolha, s relacienn ceo & afo ortogonalidade dns novas Zrlitudos o qua for-
as @dbiz z sun interpretaglo flsica, refletindo-se inclusive na elisdncgio dos
polcs esparics, que &8 serin: indosejdvels se co novoa roplitudes pudesscs ser
interpretados cooo fungSea de onda,

Uza varionte do —étodo de Syscn gque estd nais proxion do foroalismo uweado
na teorin de Felseaberg, consiste ex tomar como pento de zartido a definigfo
de produte norual do operadorcas no espado doo configuragfes atrawés dn regra
ds Tian i) ,

‘ﬂ'[x.l:'-i#l-ll'rﬂ_t:n]?l.{.[illl.tl.%{l;l] [ ] 1&[:111.*_..‘;; {;'3}' &

— o : (I.1%)
‘..-'-'_.= T""{:]-]r.l_:: “F;I:nj= * pwEE "E_r ] __._I‘._ I & snwams
cade tades o8 cpercdores sdc t-mades num dade teapo @ o produto noraal
B L txl“”'lﬁ {t'n:ll fica Fioplicitesonte definido por (I.12)
es6is que 2o fungles de contemgle
(+)0
W, (=) "fél:*}l = By (xax')
(=)
"-Fﬂ (' T3 (x) = 8, (xex') (i,13)
sfs ﬂﬂ-d-u-r Usabhdo pare -'.'r't:] es fungdes do coupo livre, o produto norcel mesic

cbtide corresponderd 4 regral uwsunl de cpercderos de erisgfo 2 direita o opeTE
dores de aniguilagfc & esquerda; codneddinde o o ordec uscda oo Elﬂ.n!;ﬂn
des z=plitudes de Dyson (I.3)
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Usa cutra cossibilidede consiste em eserover nara LH=)

o o 5 I
=o' " ix) te (x'}[or > .5‘4,; {x=-%")

ot ‘F'ﬂ (x') % (x)}o* > = ‘}r!ii;'. (x-x") (I,14)

Zata ultimn escolha @ perticularmente lmportante pars tecrics cose a de Hoi-
nmh-r;m]undn o guantizagdo @ ndo canomica d.2. [Hlx), ¥y (x? Jj'.t’!ﬁ;s{t-:".l:c.
implicando ne imposaibilidade de introdugir operadores 'bare' usuais de eriagao
e aniquilacic. As funcoea 5"::1" da teoriz do Helssnbbrg seric regpularizades co
mc conseqlienciz da quantizacioc nde cancnica, fmplicande o wso de um essaco de
Eilbert com matriea .indq.rinid:ui]u levando a resultndes finitos.

Usands agora o equacdos de moviments
BT ) i v (1,25)

ohtomoa

(3.~ B3 < ot) Tobmy)emmmees M) 1852 * 2 Cot) Vi tydoenndf Ger DI

- ; S AL EEREE N0 i s PO o O PO T LR T

- § <ol *f;Ltzl}.....I[ﬂ...,i“Fr (' )1E> (1.16)

i E
snde a prizeirs igualdade de (1.18) & consequencia da invarisncia per transla-
o no tempo. Aplicando (1.12) podemos wecrever os produtos de operadores em
(1.16) em termes dos produtos normais. llo caso de u=a equagho de movimento do
tipo (I.1) scmos levades a um sistema infinito que simbélicamente sscrevemos:
N Hs2
(-2~ 10 T § e ) } oy 3 ) (1.17)
L T i

onda .h:: E‘Mpl‘“lnt-ﬂ & parte de cpergiec :inii:!cc.g, € € :!l- funcies das ooorde-
nades cspaciais. f(i) reprosentos elementos de matriz  de = produte normal -
de i operaderes. Colocands f(Hs2 )=o obtemes un sistema findto correspondente a
eproximacio de ordem Ii.

Guand: as fungoes do campo livres sic usadas como fungies de contragie o sis
teaa (1.17) coincide coa o sistema de Dyson{I.ll) escrite no sapaco das configu
ragoes,

Os metodcas expostos ate agora tem em comum a projriedade de serem forrmlados
em termes de cperadorss correszondentes n um mesme temso, digamcs t=0. Classifi
carémo-los portanto come métodos & um toempo.

Zxiste umz intervesante generalizagio destea formaliszos, gue faz uso de ope
redores en tempos diferentes e & chasalo métode & muitm teapce.Tendo sua origem
histirien num trabalho de Landou e Eahr}.uuﬂt- aide extensivamente anlieads
gor ?-hmhr;m'“]ln sua tecria uwnificada, possuindo sdobre ca demais H.Tu0. a
izediata vantagem da sua covaricneia explicita, no gque se aproxima de CEQUEE
de Bethe-Salpeter'13),



€ mstodo Tasm-Dancoff o muitos tempos ¢ formuladc eam ti.rm. do elementom de
matriz entre o vacuo fisico (sende meste respeito um nove aétode) e um auto—es-
tade qualquer, de um produte erenclogico de operadores tomedos om tempos arbi -
trarics. ¢ produto cronoligice sends definide comc colocando wm operador corEes
pondente & um tespo postorior & osguerds de um eperader pertoncends o um teapo
enterior, com uma troca de sinsl para coda intorcimbio de campos anticomutati-
voa , tesoe

Tlalm) = <ot T ¥ lxy)eeneceaanly txt )irs {1.18)

Exemplificando o método com uma equagde diferencial do time (I.1) cbtemos

i :“_.L {n“rr‘}:l:“lll-ll!#:i; [:l]llli-l-l- :Ir-:.-{llﬁjlr _} =

a!}l
= 2 %ot T o)) e u (F PDUEY () cevene By 12
[I.19)
dicionnls
onde numa tecris guantieada canonicmmente teriemos té & direita, envolvendo

ot ix -!ih provenientes de um intercambio de posigiic entre om cperadores ‘-i'l:: b)
1’?!:’] pare t nt'rj. A iqu-:nn {I.19) rnﬂ- aser invertida por meio da fungoo ﬁ-

Feynman para o neutrino Glx)e—tee— [ a¥p o “#P%
un‘ J T
Pu]' #ic

Tta ) = 3 £ @ i3 dinen)} (L.20)

Quando a massa da fungio de Feynman usada (no caso m=0), coincide com a mas-
sa fisica de uma particula prosente no vetor ket, um termo inhoaogeneo deve ser
adicionado & direits da eguacdc (I,20), O emprege da fungdoe de Feymman e de
tormos inhouwcgeneos apropriados ¢ uma condig@o subsidiaria caracterizando o ve-
tor bra como sendoe o vécwo fisico ¢ o vetor ket como um estado 'ingoing' fisico,

Introduzindo o produto noreel de operadores para tempos quaiequer pela fn":nu_

111 -
T{‘q:{{:l}lillﬂ{:-}} =i _l";tti}!lil ﬂi’i[t.‘-}l #* E i [ % swns EI.EII-
[
Pk o
E i f # sasassna
e | | =
i?
onde a fungic de contragfo @ dada por
T (x) "I_i["fl = <o} T'F,_[I:'"qu'ﬂlﬂ'} (I.22)
e —

¢ chamando de 'fiﬂ i) =*fin+m) o elomento do matriz de ua produte oormal de
nVen ¥, sascazca de (1.20) para o sistesa dizbilice

N! H's2

E ef1) = ;@ ] }: I, 1’{11} (1.23)
R B T

=k



formalmente analoge m (I1.17). A aproximagio consiste novamente em colocar

FiH+2) =0 « Possuinde sobre os formalismocs a um tecpo & obvia vantagem de sus
estrutura covariante, o método A multos tempos difere :luu. primeiros tamben porsua
propriedade de, em unz dada ordem de nproxicmagie, levar A varios sistemas integra
is possuideres em geral de solugoes diferentes; iste & slaro, _ji que existes mui-
tas saneiras de aplicar operndores diferenciais ne fungoes T l.e. o operador dife
rencial pode ser aplicado a qualgquer dos cmmzes em (1.18), . ndmero de possibili-
dades aumentands com & ordem conslderndn. Bsta ambiguidede pode ser contornads es
eolhendo-se o sistona que por rozoes fisicas parece demcrever a contribuicio mais
isportante para o processo que se estd analizando, ou na auséncia de um tal crite
rio, tomando-se uma mod: &4 sobiw os diversos sistecas possiveis.

Kencionemos finalmente o que parece ser un nonte fraco de todos of novos nato-

; 8eja & um ou B suitos tempos. Esta ligado com o fato de que pera justificar

quer aproxisagio Tasm-Dancoff, as amplitudes correscondentes deven num certo
tido tender para merc quando o nimero de operadorcs tende a infinito, Exbora
plawsivel que os volhas amplitudes tenham esta propriedade (num sentido a

se&r precisade oo tnp.III]u”,i pouce provavel gue o Sesso acentegd Ccom &8 NOVAS
s=plitudes, jA que definindo-as atraves de (1.12,21) scmente levamos em conta as
corrolagoes de dois opergdores por meio de fungio de contragdo, Numa teoria li-
wre as correlaches mais elevadas, i.e. o8 valores esperados no vicuo de we produ-
to cronologico de mais de dois operndores, decomposm-se em produtes das fungoes
de dols pontos, as difiuil;Em (I.12,21) sendo aproprisdss neste caso, Numa teoria
gom interacgao contudo, negligenciar elementos de matriz de produtos normais assim
definidos, mesms para um nuosers arbitrariamente gronde de cperadores, © um proce-
dimento que nao leva corretamente em conte as correlagoos mais elevadas. Como con
sequencinc nao devemos espernr que n succssio deo oproxipagoes de nove M.T.D. sojom
gonvergentes para as solug¢oes exatas, o nove wetode sendo neste caso na aclhor
#as hipoteses wm metodo assintotico.

For outro lado, umn definigac mais elaborade do preoduto normal, levando em
gonta ns correlagoes mais elevadas, conduziran o um sistess de equagoes nae line-
gres para eotas correlacoers, com waa estruturs muito mals cemplicada do que o8
sistesas (1.17,23).

2~ PROGRAIA DO TRABALHC

Mos diverscs eapitulos que seguem procurcromos anclisar vma séric de problemas
gestinsdea a peruitir » fecalizngio das diferengas sapencinis entre oa diverses
sotodos Tamn-Dancoff. Assim no eapitule II o 1.T.D. & suitos tempos, até o presen
te wtilizado essencialmente por Heisenberg e sew grups, & aplicade a teoria meso-
pica convencionzl, com a duple finalidade de, no meamoe tempo em quoe ilustramos
seu funcicnamento através de um exeaple reslistico foniliar, poderemos apreciar
as vantagens que o covariancia explicita deste formaliszo oferece scbre as demais

wersoes neo covariantes do K.T.O.



Como seris de esperar, somos levades neste aplicagie a considerar equagbes in
tegrais contende divergencims ultra-wioletas, as quais em virtude da eatrutura
covariante do método a muitos tempos, podes ser elininadss por um processo de r!
normalizagic semelhante ao utilizado om teoric do pu-rturhnqﬁan,“m
assim as dificuldades a ambiguidades encontrades por diversos autores e BunE
tontatives Jo renormalizorca métodes Tamm-Dancoff 2 um tempo. A conexiio entre
as amplitudes T.D. 8 cuitos tempos e as quantidades [ieicomente relevantes como
amplitudes do espelhamento é cstabelecida atraves dz formula de redugdo de Leh-
mann, Symanzki e Zl-:n-nu.nnu“, levando & resultodos que correspondem n sowas
sobre sub=-conjuntos infinitos de graficos de Feynann dz tesria de p&ﬂm-hu;::;mn,,

Finslizaremos o capitule II eaguematizando n extensio de nossos chleulos e T
re orden de aproximagies arbitrarias, e apresentande argumentos &= favor do nos=-
g0 ponto de vista de que o M.T.D. 4 muitos tompes, como aline quglguer nove -it.g
do, nao converge om geral parn as solugtes exatas, sendo portanto na melhor das
hipoteses um métods assintotico.

Com o capitule III principiamos um estudo comparative entre es diversos méto-
dos expostos nas duas primeiras partes déste trabalhoy por meic de modélos soli-
vols da tecrio gquentica dos compos.

0 modelo apresentade;. me capitulo II1 @ formulade de modo a possibilitar uma
anidlise simples da diferenga essencial entre o velbo o nmove K.T.D., i.e. o cpa-
recimento no primeire caso de divergencins de volume ligades & processos do vi-
euo, Mostraremos que aléem dn possibilidade de elimicnr estas divergencins por in
termedio do novo metodo devido n D;r:nn{a}, o mesmo fim serd atingido mediante
uma modificegao aproprinde do volho sistemn de equagtes. A conex3o entre ostos
divergoncias de volume ¢ o teorema de Itan;m}.":ni estudads lovendo B umn prove
#implificada deste tooroma.

A interpretagio usunl das novas anplitudes como sendo usma generalizacao do
conceito de fung@o de ondn, sera: criticada com bose na chservagio da ndo ortogo-
malidade e nAo normalisabilidade destas amplitudes. Este foto & de particulsr im
portancis nas implicagdes que tem sobre o métodc de Dyscn, onde a conexfe entre
as amplitudes T.T. ¢ ns quantidades observaveisnsd fbta cooc no coso & muitos
tempos atréves de uma formula de redugdo rigorcsa, mas mediante n intorpretncio
destas smplitudes como se fossca fumgoes de onda (vide o trabalho de Dalitz e
Iynnn‘ﬂpnr exemplo, interpretagac esta que parece injustificndn. A nio ertoss-
nalidade das novas amplitudes mnnisfestn-se tombom no estrutura nio hesuitiona
do nove sistema de equagdes, fato que contribui pora torper duvidosa a cmﬂrﬁg
cin deos oproximacies para 3s sclugoes exatas, 4 que a mproximacio de um sistema
infinitc por meio de umn sequéncia de sub-sistemme finitcs nis ¢ om geral motend
ticamente justificada para sistesas nno hermitiancs.

Finalmente exominaremos no nosso medale o comportamento doa velhas ¢ novas
a=plitudes quando o numero de oporadores tende pora infinito, obtendo o resulta-
dz de que enquanto &8 velhoa smplitudos tendem n zers mesto limite, as novae,
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pera constantes de acoplomento suficientecente grandec divergen com o namers de
operadores. Istoc ¢ tomade como cutra indicogio do carfter em geral nao convergen-
te do nove metodo, ¢ de gue a nao ser no caso de divergeénciss ultra-violetas -que
em ultinma analise repressntas provaveloonte um defedits da teoria e nao do metodo
de aproximagao - o velho nﬁmlﬂpﬁn a elininacio das divergoncias de volume pela
técnica gque introduzimos, ¢ entre o8 diversos ¥.7.D0. © gue maiores possibilidades
tem do convergir para as sclugies exatas.

Hes capitules IV ¢ V estudaremos relscces eatre formalisnes 4 um ¢ & moitos
tespos guande aplieados mo caleulo de autovalores em tecrias unificedas do tipe
Il‘illﬂhl‘i,[ﬂlml
Znbere o carfter finito destas teorias ﬁn:nihilitn en prinecipio a uhtlm;in de va=

isto ¢ teorias onde o massa ¢ intciramente devids a interagdo.

lores definidos para as massas das perticules, a aplicagic da maioria dos métodos
de¢ sproximacio a estas teorias levard & dificuldades ora grupo-tsgris-s=, cono a
impossibilidade aparente de cbter messas nio nulas para o8 fermions nume teoria
Is invariante, ora dinamieas, como o apArecimanto Je auto-valorces negativeos ou
complexos em lugar de roais e positives no caleulo das massas. 4 razdo flsica des
tas dificuldades ¢ encontrads na inpossibilidedec de construir uma particula TRESL
va estivel a partir de particulas de massa nule, @ que o= virtude da interagdo
& prizeirs seampre podera decair nas segundas.

Um métode de sproximagio satisfotorio ters entdc gue levar em conta que as

p.l.rt.iu.ulu virtuais constituinde o estado fisico tasben tornam-se massivas oo vir
tude de interagdac, isto ¢ deverd ser um m¢todc auto-consistente no sentido da mas
sa fisice ser introduzida a priori nos calculos pars sor depois determinada. Mos-
trarencs que enguanto o i.7.D. & um tempo ndo possui wm cardater auto-consistente
levando a auto-valores aproxicados negatives ou complexos, os formalismes 'm mui-
tos teapos como o M.T.H. a ouitos tempea ou equagao do Bethe-Salpeter sao auto-
-consistentes en virtwde co aparecizento da Qossa fisice nce kerneis das Iql.'l.lli:;“
integrais correspondentes atravée da fungio de controglo.

Nd capitulo IV estas questSes serac cstudadas por meic de um modelo soluvel
para um problems de estade ligado, analoge ao da obtangho de mesons como estados
ligados de nucleons ne teoriam de Heinsenberg. A supericridode gque o M.T.la a mui=-
tos tespos, em virtude do seu significade fisico, possui scbre o nétodo p um tem-
po pare este tipo de problemas, ficara clarsmente ilustroda.

For outre lade o fato que ex nosso wodolo a equagie de Bethe-Salpeter conduz
a resultados melhores que o M.7.0, = multcs tempos ¢ sensivelasente modélo-depen-
dente o ndo dever ter validade geral.

Mo capitulo V analisaremcs as dificuldades coa que s¢ defreats o M.T.D. a wm
tespe na sua aplieagio ac cileulo da cassa de uoa particuls fisica numa teoria
da tipo Hoisenberg. Dsto problema analogo ac do calcule da massa de um nucleon
pe teoria unifiecads, & estudado atravis de uw= modele de u= sistema de infinitas
eguacies scopladas que pede ser resclvido.
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s dificuldades que se manifestna no aparecimonto de auto-volores couplexol om
gqualquer apreximacho, mesmo guandc solugoes exctns remis existom; podem ger o
minodas mediante una modifidagio do esquemc de aproxizagges intimamente relach
nada coa o metode uands en teorda do merturbogies de separar o nassa ‘bare’ nn
masen flslea mense un térmo de corregios Sato oodifiengle do opétodo h um tempo,
que ¢ nosso modélo lovo 0o mesnos resultados que o métode & multos tompos, @
inteiraments justificndn no modélo e argumentos flsicos oic dedos quomto & sus
edequacto ea toordms mals renlicticoo.

is dificuldades do origem grupo-tecretics nfo serfio tratadag JA gue sua oli-
minacfio pelo use de um métede auto-consistente o elarsmente visivel nos traba -
Jhoa 2o Hodsonberg'®) o Nambu'2S),

IX

M DE UM HaTaD, L HUITOS TEMPOS L0 ESPALIAMGENTO MESON-NUCLEON

I- PORMULACIO DO PROBLEML '

Exsmimaremos neste eapitule o aplicagls de uw= M,T.U. 3 muitcs tempos B teo-
rin mosonica eonvenelonnl. FPor almplicidade tonoreoos un eampo pesonico ocsealar
som vorifdveis de iso-spin , is equagfes de moviceato, cos a adtrica dada por
“ r" 2 XY = Iﬂ rn'-lri-? ¥ .'I-ﬂ {1141']

P gjil:'- s, V=g, V0

-
i 3_1'!_ a Ve g ¥ e -5,V (11.10)
x
L]
(o+ ™=y F¥:ed®0 (11.2)

 ende m_ ¢ o massa 'bare' do puclecn, m gun namps fisice p o massa fisica do

mescn o g & conatonte de asopluments nac rencreslisado. Dos campos W ¢ ¢ sa-

18
tiofezands rogros de eomutngie cononiess passomed noo cansos ronormali 5 )

1 kox
YT = Y - T;ii*ifﬂf il ‘L.a;:.m# Lot fe oy

(11.3)

- - 2 i 4y T

b - Y2 ¥ (x) = [1?1-3 "J{V‘ [ﬁit-ﬂ,thi + by, tlu 1:. & 21e)
ml

(IL.4)
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Ryt
-1/2 (} 1 2%
(x) = $lx) = —-——1, a* (=i, 3+ alk, t-.'! =TT (I1.8)
EE 2{an) i 1:-;;1
u-ﬂ r i hal -
{x) = dix)=1"(x) = 5 tRE) = Al ) 2% (11.8)
Ea H{BFI:’I ﬂ 1 BTy j

L ui.vll sae spinores ¢ energis positiva resp. negotive correepondensd @ mas-
m @ &8 dums orientagoes do spin com a condigac de normalisacio

Bal _ (11.7)

= e

Bzl V k" +m

Fik)= Vv 'EE+I.IE (I1X1.3)

Definiremos agora os operadores ‘ingoing' o "cutgeing® por, (e rigor o8 campos
devericm ter side projetades sobre pacotes de cnde nermalizivels ¢ ndo sobre on-
dos planns como em (I1.3-8) )

1i= cullat (R, ) | B omin(EIE r","t:‘mh:+ B>
B =0 L b
] Znt(E ) | By et iBUKIE . } *'g&fmﬁ
I\in-!.ld*{i,t:-fh-"‘”"l" L:;l:&:nm} (11.9)
( <ollalk,t) | Bs o1VHOE I
-eo | <AIb(E, 1) | 5> at B0 ; ]f *“u"'”ﬁ‘* ek
LAl L) | b ot i -ﬂﬂ"’]lﬂ > :
m:t

eade u.In{m ..h:nfi.'! .d:n{f] .nm'fi] 'bin{;] ,din[!{ ato operaderes de criacic reap.
out aut out out out out
eniquilacio de particulas flaices em estadcs ingeing resp. outeing, Zles diferem
gos cperadores usualmente mpﬂglﬂu{la}pur wm fater de noroalizagfio covariante.
|et> e | slic estados arbitrarioa do espago e Eilbert da hamiltoniana total,
De (I1.9.10) obtemos oe campos "ingoing' e 'cutgoing! sacxsfazenco as cquagoes
do eampo livres com messes fisicos, o obedecondo & relsgées do comutagfo canfni-
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i T (M 1Y g AEE -1B0a)t]
(x) = J'_Efz}a di {m'i‘ = hiti']u [ %
out (27 E.‘l uuﬁ nuin
& (II.11)
-iil: + i 'fk}t- Euz‘i "‘.h]t d‘zh
eyt 0 + dk
:::‘ﬂ atzmm/ I\ﬂ“{‘m : o ] wl)
out out
(I1.12)
De (II1.11,13) segue-ge
s o= 4 =ip, X
i e 0 8 e T R (j°P1 - =)t = 0 {11.13)
L T bt ——sa n
out in (2m0
in t = conat.
-ip.x =dpgex
3 Lo
.1- IF} a =f f f s%_ﬂ (x) e * f-::’ .&_‘ :_}E’ T
2 out ¥ 32
':: t=const. in H.il.: o j{ﬂﬂ'j
- =1 FE*I
1 _1){ & (=) }_ . i (II.14)
f=const "’:: dt (am /%

'] 2
(i
® formulas correspondentes para o8 outros onersdsres.
Iintroduzinde o wacuo fisico tal gue

(i) \
|
b ® |
; e fe 10V % =0 II.18

emos qualguer estado fisico (nssunindo & 'coapletnesa' dos cempos assintéti-
) mediante a aplicagado de operadores de criagioc ao vacue fisice.
A matriz 3 covariante sera dada per

S”;: < fout |0in> (11.16)
Ll 4 caracterizam os nimeros gquanticos das particulas outgoing resp.

Tomande o caso do espalhamento meson-nucleon, com o indice '1' referente ao nu
2 o indige '2' ao meson tenos

S“i"é’:’t = { pypy outlpyp, in > (11.17)

Dsande (11.8,10,13,14) obtesos



14

Iy l.pi#..ﬂ. péﬂ

Lo
1 in
( -1 jn w 1 fi =0 ﬂut“l”uutuzhlpz M
da: dan ;
[ . 1 Ea
| ]
5 A (210
PMPs PPy
I
' ] [ i . r
= 3t
’1—.---"2-*# 5 3 =
in dx. 4 £
- 5'1;'2 e 1
(am?

Por meio do teorema de Gauss

;fd.":g Ei P3%y {E-ng}{'ﬂ‘l T‘-I’rixllir[lelplﬂain “} s

ipix. . r o in 3
B J/' Pa%a ‘&{ O IO (e Y (x D Ipyp, D @7,
2

ta-—l-w J'Ia

i —— a_
pLx T L r in d” x (II.19)
oo -‘J. ST % {':ﬂ | % *111‘ {IEHF].PE :} 2
2

E —

Lembrandeo-se quo p'g = l.i,E p

Utilizando mais uma ver o teorema de Gauss com respeito as variaveis *y
com Eil'.r'p'ﬁ = m) = 0, temos finalmente

5 i
pipiyr, = < pippinlnp,’” > ¢

4 & i pix +i ;p:ix
d x.d x 171 . _1 ; s
que & a conhecida formula de redugac de L..“j_z,{zllglzm_
Escrevendo
5 it il | i 54 i
p{paey Py = <Ripg inl pypgin 3 o+ 195 (pyepa-py-polilsgt) (11,21)

ende Al{s,t) @ a amplitude invariante de espalhamento com

i

u
Als,t) w 1 U {pf- 1) ip} ru.nlﬁlpaiq*}ui (11,22)

Pl - p!
onde q' = F1 ] [
e
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<0 IT 1}"'{;1}«#'{:2”91!51“ > ctﬁt‘:‘luﬂl =

"‘-‘4 -ip¥x
1 L | - = Kl 1 l-ip“
= _é_,l'.n @ (] B3 = Py=Py) ‘i::lPﬂf.q le 2 d‘!"? d"pg ol aTia

A despeito do fato de pégn Fz . p1'2= .21 (I1.22) nio ¢ nula ja que, como lo
veremcs, ¥ (a") e singular neates pontos.

- 2 ¥
A equagao (11.20) mostra que o probleme do espelhamontc meson-nucleon ficara
lvido uma vez conhocido a smplitude < 6! I'I'f"lxllllri',:gllplpzln}. Fara calcula
a faremes uso do M,T.Y, ¢ nuitos tempos.

#
2- CALCULD A URDEM MAIS BAIXA

Da equagac (I1.1b) obtemos

1342 on |68 5. pains =200 17 { & Yx)00x)-5 1)) 805 Ip.pit
Gy x)8(y) lpyppin> =0T} g Wix)dlx)-0_|(x)} ®ly)ip;p,in>

(IX.24n)

rtende a equacie (I1.24a) por aeio d.ch'mq.u'u de green de Feynmen corresponden
5 massa fisiea m

-.i &
) wstd d‘:p e P
¥)

o 1 ‘U’ - ?J“]; (.1.25)

levndos o
0 ITF(x)0(y) Ipypyin 5 = (&) +

i |
+ /SF[:-:".I =0T Ikgu"if[:']-ﬂx'}-imﬂx'}fi #Erllplpzin > alyr
(I1.24b)

o termo inomogenco "i"q representn uma onde plans de porticulas incidentes
a mnssa fisica. No caso do uma teoria do tipa de eisonberp onde a gelf-
€ finita, poderia scr mais conveniente usar u fungio de green correspon-
a massa 'bare' para invertir a equacae (II1.24a). (vide ||||:.l|aanl.'m:r-smi't ¢
ap. IV).

A ideie basica do M.T.D. & muitcs tompos consiste em admitir que a fungao
3 pontos no integrando de (II24b) possul aproximsdamento a mesma estrutura fo
que a fungdo de 3 pontos da teoria livre i.e. gue ela pode ser aproxima-
por um produto de uma fungaoc de dois pontos por umo de um pente. Eata hipote
t & menos restritiva que a da tesrin de periurbagces & gqual na ordem mais bai-

aproximaria a fungao de 3 pootoe pela eorres-ondonto funghe livre.
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Matomiticesmento a apreximagio T.D. @ cbtide reescrevendo-se o produtc cromold-
o nc integrando do (II.24b) em térces do urodutc normal, por =eio da regra de
{eg.3.21)e negligenciando un produto normal de u= nuzere suficientemente gram-
de cpersdores. As consideragbes feitas na Introdugdc quanto mo carater aproxi-
deste definicio de predute normal, mostram que seriz desejavel levar e= con-
ss correlagies de dois pontos exatameste, 33 que os zeis olevadas sfo pela prg
definigio de nroduto norasl tretades aproximademente, j& que as sais eleva-
sio pels prépria definigfc de produts nermal tratades sproximedsmonte. Isto &
wdo impossivei, e coso uma primeira etapa sproxicerencs as correlagtes de
pontos (propagadores) por seus valores livres coa e =ssse flsica. Iais ter-
eata aproximecio poder: ser aelhorads medimnte o uso do rosultados de teoris

e corturbagies para estes ;ropagadores ou resclvendo-se em sun ordem meis baixa
equegio nfo linear que o métedo Tess-Damcoff di para & detorminacio dos propa-
. hssin useremos couo fungac de comtragao

=11z (3=5)

4
£0(y)= 20" | THEOLy) 107 = =osglemy) ¥ (- cdete [EE2 (11,26)

N o e
E 2(MY K -u i
A sprexicmagho mais baixa para o problesma mesca-nuclecs serd cbtida despresan-
o produto normel de 3 ou mais operadores, & nic sor nc ter=o que aparece sulti
ado pord_ onde um produto normal de 2 operadoras seré deagrezado. Zsta regra
corresponde 4 tratar §_ como se fosse uma corregic de orden mais elevada @
iria pars a introdugfe de u= formalisac de remor=alizsgic de massa consis-
te, ¢ constitul a modificaglo essencial que o H.T.<. £ suitoe tempos empregado
Heisenberg deve sofrer para poder ser utilizado nuse teocria divergente. [ifp=
que considerar o termo com é’n equivale 8 utilizar u=ma fungio de Faynman coo
‘hare' na inversas da equagic (II.Z4a))
Obteacs soaim a partir de (II,24b)

e ‘f'?illrhsﬂ ﬁ!!l = :1}.1.?[1 - x2*) 00 W'f:vllplpﬂin} oy Exan

agere a eg. Ille
; [:I. 'i_nu }{ﬂ.” W (=) |plpaiu xom !ﬂ = 0 W’EI]I’I‘IJPIDEH::‘ (11.28)
sr conseguinte
«¥ )= ‘fnl:.yhgi fﬂ,h-ﬂt'] 2ply-x! IEFI'L."“'I:'-:“]{G'I W:“!#[:-'}Iplpﬂlﬁ:)dt'ih

" ‘fﬁi:.ﬂ-gﬁ f Er{:—:'].ﬁri.'ar—:' IEE."‘“}'{:*-:"HI:' ,::“}d‘::'dq'f (11,28)

n:.":ul @ = fungfo de Feynzan com mass: a_.0l0o espato dos momenta coa

Py - .
iy * Py PO o i shtemos & partir de (II1.29)
2
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{=p)
B = (2m3 & (q=q')s i —?--;- P& q') ax g - a" 82 % () f‘i’{q"}d"q“

2(m

(11.30)
'.'(P} = 1 L] d-rtk} | "-l-ﬁ—
fem + 15 k -u"el]
snja
&
“q']ﬂ‘q" = 5 -
% 706)
I" nﬂ' (II.31)
W
i } & i far | - q_“}ﬂ -q_“}ﬂ q“ {JIIH]
» (am* 1 <%
fla') = (20°5 (a-a") + 1 g S50 +a*) "'?‘E —gt] tam"
ey | -1 - P, B
(am* 6, =) (11.33)
finalmente o amplitude de espalhamento & dede por (vide II,0a)
" = :: EI ! I.'l:'
Go:. - a, -g = tp) (11.34)

ne 4Gltiza passagem fizemos uso do fato que e equagio integral (11.29,30)
u= kernel (vide fig.l) que nie cente= tormce de rencroalizagdo de fungde
enda, loge por consistencia pomos "'I'r'- ¥4 =} , costs aproxioecao.

A integral (I1.32) coincide com a aproximacio perturbative meis baixa & self-
do nucleon, sendo pertanto divergente. & equagho (II.34) contém conse-
temante expressies Civergentes ¢ deve ser remoraciizeds de modo gue somente
idades observeveis finiltes inmtervenhssi.

Escrovenda

. Am) = 0
- - %m € R0) en) i Rip-.'!ﬂ.ntt.n} (11,35)
]

B =8 - H#m, re-esereveremos (I1.34) eeoco

-1
i o (I1.36)

(29 (f-a) (1-goa(p)

$a . (m) =g/ -gal ey (11,37)
o
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Interprotande t) eomo sende a constante de aceplamento cheorvavel, & eq.11.36
terd sonente quantidades finitos, ¢ a amplitude nsod= obtids coineide com &

& dada pela teoria de perturbagfes rencrsaliaada quande scasace todns ea ite-
do mais simples "meson-nucleon~bubble”. B be= sobide que esta cmplitude
"Mt-pﬁlll”{zll-ﬂmu nap sabemos se estos polos constituss ume falha do
dg aproximagio ou, mais provavelmente , um defeits intrinseco da tecria, o
que pedomos fazer consiste em subirai-les de seordo com um métods apresen
per Mnndtﬂ}, @ cuje significede fisice eatd aberte & verics conjetn

» Frocedendo-se deste modo, umn dependencia nidc enslitice contendo sin
eagenclais no constaste de scoplaments & introdezida na smplitude de
ta.

Beame oode como usemos & #q.I1.1 pare o campo fermicnico como ponto de par-
a8 cbten¢ns dn equagdo integral (II1,29), poderismes tor utilizede a vq.11.2
‘8 gasipo de bosons, levando nesta l& ordem ace mesnos resultadoa.

3 - ENTEHSED L ORDEMS MAIS ELEVADLS

Fara ir & aproxizacdes mais clevodos devomes aplicar ooin u=a vez as equagoes
sovimento & fim do obter anplitudes contends v maicr nusero de oparadores,
Assim eplicando & equagio (II1.1b) & smplitude com dois pions presente no inte
de (I1.24b) e inwvertends por nels da funcic de Feynoon temos,

Ty (' )¢ 0x*)9(x) Ipyp, in » =
. fartﬂ'-:"l'{ o] T {I’u Flax" ) (x") -

- 5, e ]4::-111;1 Ipypgin % a¥x (11.39)

Efetusndo na contragoes no integrands de (I1.38), ¢ sbandonendo os produtcs
: de sais de 3 operadores, (a nic sor ncs térmes cultipliendes pord_ onde
goncismos um produts normal de 3 operadoreos)obtencs

T er i) | o dm i g Byt =x) ayxtext ) ity )a® xr 4
(11.39)

] ln,f-*-ﬂ-tl"!"]'ﬁrii'-F]'F‘IH-I"M‘I" % lufﬁrh"!“]ﬁF[I-I"ILH!':I*H{I" =
[3ptxtos) gtetn) COU Hx oyt > o'

Introdusinde (II.39) em (II.24b), usando (II,22) e efetumndo a transformagac
Fourrier deo resultade,

| . | =5
a') = (27M° §¥gq1) o = ['n I IR AR

F - =

2 1 a
ieg, 3 () 4 1% B (prieclp.) «
P (p') actp) S ®0) (o) [ (quyaton + —2- Sp1Pilaping
! ﬂrnig' f (amt

(2m*
-'J-.rtq_t*-q-m‘“}d‘q‘ III --l'l:l,'l
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desta equaglo integral estd representade graficsmente na fig. 2.

2 {ms) 7
M M R e S R (I TERE

(am*
(II.4%1)

e 2
L5 B (ppngley [Sptarean) ¥ tanatys
4
(27
2s o kernel de renormalizacie de fungdo de onda (o 4ltize da fig.2) foi elimi-
nor diﬂuip com o conpequente aparecissnte de uwm fator 3;"'; 3 multiplicando o
» inosogenes. Z(p) & o propagador corrigideo na orden mais baixa iterada

11.34,36).
2

2
E E
v {F] B L 'ﬁ- = ‘1‘;' i
- -g ">_ (p) (g - =) 11—511’.[?” (1T.42)

s ja cbeervedo, este propagador contem "ghest-polen' gue devea ser elinina-
Como ele contribui sdésente & corregdes radictivas ‘segundas' podencs tashex
a posigac simplificada de subastitui-lo zor um prepegedor livre.
- - i ,_*Uz 1iF =
aproximegao 7.0, a consistencin exipge que cologuenca ¥ = 5, .0 =0,
zﬂ-lll 2 l_?

- -
O T sf E (p}) aglpd) T (psqia') + . £y .
L (2 (zm?
' (I1.43)
,Hp{lnrtpi]ntmq“uip.ﬂli
=0 "
3 _:iﬂ_ ["' (q+1aqe (11.44)
- 2
i
introduzinde (IT.43) em (II.41)

e
= 3 !1 i 1 i 1 wyaton
Q") = 5,-‘1.“1]* [EF}" j'f,{ll'*q }ﬁ% +q") ﬂr‘% = }T{FtQﬂI'}d q

(11.45)
i EE f
Pl L Fﬂq“rq'lﬁli saaglp-a")Qlpigmaty’ (11.48)
(2} &
azinos agora ?ip.q.q'l tal que
(11.47)

') = T(p,q*.q)

lﬁF(thqh- m
tan®

8} /Tfp.q.q"l‘ﬂig z q'L_'InFIE vq“!'jrlq'q-q“]d‘q“ (IZ.48)
~ ! k



De (I1.68,48,47) obteson

Tip,qiq'y 4 = Lipyq") (IX.40)

-

A' Tipygie') = 13 f'%(p.q",a) = Jp,g) (11.80)
1w
g 7 sntinfaz 2
o -
eat) j'!l Jlr a] T ) I.P.q“]sti “]ﬂ." :
e -1*{2*}"' Upsg" (R qn)aplf a0 .(qlsqM)dy {i1.51

i solucBs iterstiva doo ege. 11.48,48, # finita eorrespondende a gréaficos éc
3. For cutrc lade & solugfo iterativa dns ego. II.46,51 levn £ integraim so
neias ultra-violetos, graficasents representadas na fig.i.

[II.48) obteczoo

I. iy = h,ﬁ:-..tq".-.h (ligi'ur ..,q_-l\_a;l{ L4 5: B l.% _,l:l:".l.gﬁ'-'_; L

(21.52)
. ate,qn)aten
1 af r' %
) w1 ﬁJ{%muwzau+qulﬂu*qnh - quicie,gmate
(2M) (11.53)
= 2lt,q*) [ att, e8]t {11.5¢)

m.,g {77.53) sossni wms solugae iterativa finita eo wirtuds do tarmc de
ancia adicional nc kemnel. Je (I1.48,;53,54), escrevends

84 = Clt,q") + Slp,t,q') = alp,q') [20e,442))72 (11.58)

_ At
I L = i .
) ?FE‘E_ | aptatea | NE o e0ep(3 . q= B(E . qiagls - @)

. C{t,q"]d";q“
(1I,88)

j 2,(q%+q") Bl . q“h.rl:% - q") D(p,t,q"ld‘q"
a2

#rso inocogened da 0g.I11.56 cocporta-se como log q'/q' pera gle=-, o que
catuse molugio iterstiva finits, .rgmentos seaelbantsn poden ser spliea-
1 La') lova-do 2

) = T(t,2/2)8(n,q") (I1.87)

Fieito. Uz vem ous g poocibilidede do obter waloreo [indteo pere Tlpgt)
g A extragio Co o aomotstte sultiplisotive diafindtz fiecu conirode atraveg
311.53,58), poficeso ne oration utilizor (11:48) pers esleular Z{5,5')-



b |

zodo, usaado tomhis (I2.47) o nosac sroblema ae redus & sslugfs do wis sd
o dntegrel, = sebor (12,45)

For ragoes de inverisncis relativistica tonos o{t,t/8)s.(1+1 ). Fura tﬂ -
moe contude compiderar it t/2) = QUI+A) = iz, 2 ) deade =qul poakasos
tentomente F m = o todos forsuloe finads.

ado {I1.43,44) oncontramce agors

-

..qj.{_l i

\ g0 - “} j B (2, amagl2 - a) alp,aatqe }

a (1II.38)
e f AR _ q¥) Tlp,q.aMa g |
" . 'ﬁ - b
[“W F-L;n!,.i q") T(p.q,q")d q _}
eguogEe (I1.49) usando (I1.50) scgue-Go
2
1y wygian
Nt j F [g . qa-lﬁ.l‘..s - g} T (pyq,q"id7g" = (11.59)
= li= ' Tlp,g,9') = Zipya)
"l-q.:h.-
fuzindo
el IHE 2 igl® ") alp,q")eqn (11.80)
(am*
L )( B2, guiepl® . g clpyane’e” = o (p) (11.81)

[.m 4

L integral (11.61) & divergeats e comosintegrande @ finitc serisces tentados

peampo-1a cozc o= (13,35) & fim de extrair sun parts finita, scontece coatu-
um tal moteds falha neste caso on virtude das chemadne ﬂi‘"rm;n:l.nn-

. 't“}.?lrn cprender eate fato con walor claress cocrovamon E I. 1=

diszersive

[alda
p - nn (II.83]

i
f

1 3, M0

® & condigfio de¢ unitariedade na aproxicagoo de 'ndo produgdo’ (ou sea epro
perz onerpice sbaixe do "treshold! de produgao)
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s} » W a) = 735 o) 2im) Ha) (T1.83)

& = fungfc acspeeiral de ordes mais baixa, i.e. = funglo musctral do %
gl

=

.',ﬁ

11.2% o ._:i.'ni n olg,g) oo iiu; ,i‘-'- o Ig -g ) =u
o pdjusts de o o difors da :'. sor ser mati-cauecl (4% = 2Ly,
LEGiz
. - qﬂ‘f 1 _ﬁf
) = Slugz ) 3 fmy g ) 2 7e) 17 (). T e) {i1.84)
] = E

_-'ih {Zi.04) naaua-m e ooéa & extragEs do Later ~.,i.':..-] H.tl‘.'l._'l} de 3. E;-] ocus
3¢ especirsl gerd Tiniiz o oo coaportart aara 8 = o Botise ‘ ¢ (8) vezen tor
logaritaicos que ves fe T e C. Aosis, (polc aencs ou oxpansto pn-trt.urb-l.t o)

- = p—l
subtracies oorfo suficimtes pers tormsr _ (p) finito. Destos

L]

ilo.n)sino !
]

iderngien sagus-Be 40

]
fqr) = (890° & fgeg') » 4 ai*taﬂ Fp2aglpli Pmaiat)

+ £ g."” (2o F (5" (") olp,g") B (3) Sizia) {11.68)
- 15 R
A o
(g-adla-g” 2020 31.88
o o sropagedsr os sesuwadn esPregic W.d. o
g 2 ang(Pe g o
e i1 E. <% i oo# .+ Eﬂ _'.__lI:.L]l (11.87)
- TR Lo 1
1 = E ——
1 w7
if___:;l_ [ip) =7 (2) = (g - =y o (e ] _ (Z1.85)
o (LR :!~
g
s 530 1o -
-0 [ A e }.T_. B{t,q") F (_t_ . am #‘% gt} glgiet /) qﬂl" .

) e () =l = w) kb))

Ip'} dodo pep 1'.-'"1':-4-}-
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u;r'ml:im.n:n.a cansidersds & consistente 'o-inrmios ﬁ-ﬂ' = gi ipusl & econmtsnts do

E}lmnutn cheervavel, J& que elza diferss por nfaﬂu-l af srdes oois clevadre que

incluidea na gresente aproxisngis,

¢ propagader BE'(p) ecaterd, pelo cchrs parc uoc expansdo perturbative do RY

set polee! zue deves gor olininndos cooo antoriorsente. is funcles = o & sdc
ate verticos ronorcalisadse coc eorrecies radietivas inecluidsa.

A amplitude de eapalhcnento & doda nesta orden por

1
(am<

- Fara te-le explicitaconte o sslugzo da equagac (I1.48) devers ser procuradas
A estrutura foroal des oqguacces integrais obtides ou pegunds sorcxisngfc do
Hi?% soites tecoos, @ muito setelbante 4 dus oquacios cbtidam por Dolits &

ma explieitacesto covarimnte, o que possibiliton a iatrodugrs do uwm caguenan

§ rencrz=alizecio livre da achiguidade encontradn per estes cutores .

| Ma exposigne feita ceias obtivemos o segundn oproximagio usando dugs vozoo s
dvom &'equagto pore o campo feruionicos iz cesma ordes de oproxi-=neto oxis -
ac todo sois r.:-n.uniru diferentes do nplicar as equogies de soviaento, levan=

T L& 7 (oma) + & o) ) e ) ol 11.58)
a 2 !

por =eic do novo _etodo 2 um tempo, tendec oa nosioe o vantages 6o sun

m uzs delos 2 ua Reroel difercnte. Una sisples andliss mcoetrs que © noasa

5 & & obtida usend:c oz primeire lugar a equegio pora o couape bosonico, @
pidn = eguagne =or- o caopo du onti-formdens, esrrespindesn 2 korncis deo-
de o salor wimerc de processoos. Istos ducs possibilidodes Ciforom adocezte
e de renorczlizagio de fungdo de ondo qQue me primeiro caso atun echrae o

: Bl o N0 SoZunco s3bre o boson, podoaos fociluenie passar do @is para a: ou-
=edicnte o substituigio o= ncasae foriulas B [p]-l&rlp] 'rdl'p'-lP]" Lip), onda L[p]-‘-
pador corpigide { o 'ghost' subtraide) 2o baacon.

dado & ordens ceis olovedns (pars fixer ideins nodinate o spliengic dn equas-

p do movicento soapre oo ecipe fercicniec), ¢ dedxande de lado para o ooooato
tir. do rencrssiigagis de sasas L, Que serfo reintroduzidos nos lugoros

3o, Voaoe gue usande o Ir.rqu.nr;ﬁn d¢ zovizonto n vesmen obtomoo wme relagéo
a a=anlitods Jdo o+l Dogons o 2 emplitude de n beosono. ZBerevando o amnlitude
0 sob o forue do produto nomsnl, neglizonciande o produte noranl Se oel
Seres biscnlieis, o re-sserevendc o rostante novonents ach foren do s produ
Eginﬂ| cbtezoo ascim wan conoxno cotre a n=-1 =opliiudo o o n smplitode;
mtrocusinde ogura esto resultado na n-1 welcn cquasie chteuca wan equagho in
Bl porc noromlitende ecm -l bosons. Usnndo agorn me equactes 1o atd meR, sode=ts
'-- recalvide o equagto integral colenlar todos ao asplitedes 0ié cheparmes
eo ¥ boscss o sioples andlicc gréfico destos oquagses =seirn Cue NoS=
ieriors arbitrarignonte olovndus cortos procuacis aunes oioe ireleifia ecouo
iple o espeliozoato wirtual do nesdas mor polo do forongfo do saros da an
Etf-auelach; Quo roprasenis win corrogfo o sropapgador d. deis pomaoo.
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to eotd relacicnsdo con o fato ja mencionado dn inadequagne de nosos dofindeis
produto sormals I possivel queo usando uas crden ccnvenionte ma spliczgic das
iveis oguagtes de _ovizents o8 errce provenleates deotn definicio da prudﬂ’éu
posscm ger dizdnuides, 228 & cuvidose gquo pocsomos elinins-los comslota-

ity
Eatan quostocs bom ecoo wa estudo de probless da rencriaalisabilidade geral do
do 8 cuites toupos sorfo tratades msss noteo posterior. Pars cocpletar ceneds
que A roncmenlizagfo o3 ordons mais clovadas uxipird possivelemtue o intro

de contre-tersocs Ela, ﬂl'; » e lagrongoane, (Fars ua compo pseudo-escalar é
quo Gioeate vm térses ¢ & necessario, )



IIX

A3 DIVERGMNCIAS DI WVICUC HO VELEC M.T.D.

-

Tendo cpresentado an Introdugle wa apoabads geral doe iidtoldon Temu=Doangoff e
segundo espitule = epliesgio do uence coabecido witsdo f wuitss tempos £ teo
mescnicns,; cosegorancd agors uo estude couparntive dos virics vorafes de
T.0. por veic de nodelos soluveds.

Nesto eopituls anclisareccs probleoss relneionades eou divergésciss de wioms
wme) no Yelho pétode Tasc-Dancoff, o ouz elivdnngfo sejr por meio do nove n.i
de ﬂ:nm|m"'lljn por wan nedifieagho aproprisds do volho sistaia de oquaghe
A relagho destnos quentdes com o tooreus de H'-nng{”nri apresentadn.
Finslmento o comportasento dns novas ¢ velhos asplitudes quande o nimorc de
o6 tonde no infinitc perd ostudado wm nosss cedélo.

Na procura de = aodele onde os aroblonns qQue nos proposcs & eatudar nomBsm
faciloente tratades, dovencs ter oo mente que o ponto eesencicl & a diforan
entre oo wocun ‘bare’ o fisico. Escolhemcs portantc wa exesplo no qual oa
essca do vicuo 0io oo tnicos prescntes o foroulsmo-le em terzcs do hanilto-
bilinoar

; Oty . (111.1)
= Hn * E_l_ut = f I{k}ﬂ;ntd?k * fg[l:] i"lnqk = "'.I:n“k; ﬂzp
glk) = gl-k) ,g (k) = g} , 2 |g(k) | < wik)

;‘: " & Bao resp. opersderes (bare) de criagio @ aniquilagac satisfasends

ﬂki ﬂ-“"'tll ™ E-EIH*J' 4 [ ﬂkp‘" II a O § [“';'“;1 i = 0 (1i1.3)

Introduginde b* o b por weio da transforsagno concnien
Kk k

8y = ocsh O by o+ senh @ b - g (111.3)

&, = cosk @, b, + senh G BT

20 = 8 glk) {1514
wik)

emos n dinponnlizacfo dn hamiltcndiana (111.1)

.f ‘il'l':rf-{ghi by hkd:‘k-l%flf-w:-dgia e 1 % (¥I1.3)

aads

%t0) = 14
=

L s
tina { #-I!ﬁ}



® V& o voluse de quantiszagio,

Procuramos agora o estade fundacental da hamiltonimna (ITI.1) di.e. o wacus
ice do nosso modelo. De (111,5) vewos que este sera dads por us estado [C'
qua hklﬂ".'b-ﬂ. éxporizentencs para |0'> & expunsio

> n} { 10 >+ J{-!liklhill:glﬂ_,}d?klh."“.- ’

- ;fn th1| HEEEE h-“]ﬂ‘-hlﬂ:klfitirntlil"nﬂ.:nnlu}d-skilrildatnf-t*.||
(1I1.7)

de |0 > & o vicuo 'bare’ com o l0>=0, ¢ ¥' wma constante de imormalizagiio.
Invertendo (IIl.3)scgue-ae

= n: cosh 3 -c-psenh 6 (IXI.8)

Iﬂ‘ '} = [:Hh ﬂk{ﬂl'l lkl-ﬂ;ﬁ" r !‘Erhlllk]-lzlﬂ:hl .-.;-*3!111-1 @ EE e

pEEE B En_‘]l rntH]..----tn-l-k]ﬂ;lﬂ:kltli--lkdak]lil:dakn_liillltl

A o (111.8)
= Ren -1 uh(l“- - ..ll!r fltkllikll.-tln:uskliu+”n]jHE:'|'n
' 1 4 ke “r'h . \
f,0k) = % tgh Qe -3 | — e
-
'-i‘"l"'”'“-i = ;-!: ltﬂ nh'l_. EE RN ] t'h- gtu [I EIIIlm]

Devencs agora determinar N de modo a ter 2 0']0" = 1. Para isto quantizemoca
liminarsente o nosso sistonn num volwse findto ¥V, ¢ gue implica na subotitud
gho de todos as iptegrais por scantorins. 0 liolte V== sert tomado finalmenta
produzinds o caso acina. R
(th 3 k)
n

-htrﬁmuﬂ'i tk].qim nkn;.:kjl = 1+ tgh ﬂhﬂ;n:k Foawat -__r'—_-'ir-ll-

(IIX.11)
4 4 *4¥ n
)e [t‘hﬁ a_B AR tgh @ aa ) o (tgh & o & .'|+ 2
= % 2% 1

sechance apis un cileule sioples eomparandc com (I111.7,10)
1 g 1 P tgh P | 2
W A0 T L (k)OS = W oxpy i UER Gy 0> = or {TII,.12) -

ende™ indicn un produte infinito que inclui scuente wan vez o contribuigio do zav

k0
pard k)  ed(-l) aclix).



Coose 0@ opersdores 4 sAc independantes

<0110t > m 4 Lol (oMt} T (datic) [0 > e 014 (03400) [0~ oL () L) 103
N le¥0 n kG
(111.13)
De (III.11)cbtence

<0t {0)2f0) [0 s u -2

2
V1~ (tgha) (I11.14)

e A S L e

1 - (tgh &)

@ imponde <0'|0t% = 1 oncontromos

e e -—: :_[% Log(1-(tgh 80%)) + L 1bg (1 = (ten 0%k - (111.15a)
a0 5

- -:p% {g leg {1 -(tgh Eh}if}
Foaxendo o limite Veswobtemoa foroalmonteo

3 ;
L mLi—éﬂj &%k 1egl 1 -(tgh nklzi} (111.150)

4 E - -
Como logl 1 =(tgh 6,.)7) <0 concluinos que N tende & =ers ncste limite-# a

expansao (II1.7) parde entds um significado matematicamente rigoroscs Com plfei-
to fermalmente |07 & ertogonal a qualgquer vetor do espago de Eilbort gorade &
pertir de |03, nas rodendo portantc pertencer & eate capaye de Hilbert, fato
que conatitul & essencia Jdo tooroma de Hang.

0 recultads acisa nfio & de modo alpus uma pnrtinﬁlnridndu do nosso modélo,
mas wen proprigdede geral de qualquer teorin relativistics, como pode ser faeil

mente constatadc uanndsc o expressic -r.-.mh.uc.ld.u“m
10! > = f(0,-c) 0% (111,16)
code
:"tl 3
8(t),¢5)= T{ exp(-1 JRp(0en) | (11£,17)
2

- i L i
Da analise dos diagromos de Feynman correspondentes 4 (111.18) chepn-se &

ecnclusic que o fetor de normalizagio ™16 devide A contribuigic de 'elosod
leopat podendo ser escritc cooo

. exp | L {111,18)
onde L & umn sose athre todos os 'copectod eclcmod loupa!
: L A s
7 ; £ s .
= E Jﬂlq.. -w“ Iﬂ ﬁtl I'l-ll'l--r-!‘ dtﬂ h“{ll“la‘ B Fdow "':ﬂﬂ-l.:ﬂl
By v s o (111.19)



Deeczonds L as sua sarte resl o lesgiafris obteace
¥ o e .

La-tivep-vh! {£17.%0)
Lt e

onde ¢ @ o denpidnde do melf-enorgiz de vhcuo @ N 7de & porte de oo fucor de

fape irrelevants arsovendents ds sarte lospinAria o Jevide 2 Mfersngs do SOBE

gin entre o wicwo bere & o flaieo, tems H-]'

ac modelo.

Temca agors ca clemestes pars wa 'srove ingenun' de tecresh 4o Sxag. A
despeitc de sus falte ¢eo ripor matesitico decidimos apresenta-la 18 que as de
ponatragoen usuais fasends wee Jde w-a catematien bozetante oloborcda, tendes 4
escender para o nAc cmpeciclisto, oo powsos sioples fatos floicos que consti-
tuen o bame do teorecei O fato &8 Suc o8 processcs de vicuo (erizgfs virtunl
do pares) necotoces com uniformddade o todn o extonsic o espocc doplics ex
que o prebabilidede da escontrar no vacus flsics a procosscs indejesdestes &

- proporeicnsl & 'Fﬂ', o conpagquente=entes no licdte V =—=- o probabiliczoce de gscoa
trer uws niserc finito de processos (ou equivalentemente e nimere flaitc de
m{nﬂﬂ thara') toras=se nulo ez virtode do contribuigic dooinonte do oloe=
infinite de procesoces Soto o o ragad flaica da ertogonalidnde |8 So om em
toadca "hare'. .

Na aun forsa mois siunles o teoresn de Baag afirce que 8o oo operaccoree Jo
wa teorin dos cacpos relativisticomente invariante coineides mm dade instam-
cca of operadcrad de wma tesrda livro, entde ¢les coinciden oo qualguer teo
& & priceits teorin @ portants livro toobon.

Fodumcs cccprouder este tesrc:a jA ques 1- Hema teorin relativistico e in
30 o vhcuo bare ¢ dferente do fislcc pois o hamiltoniana & formadn ea
térocs de cperadores lucais de czmps que Jdeperdes tanto dos coorndores de erdg
'ﬁn e de mefeullogto. Dxiste gjortontc ne jarte de intersgie we ters: scoten
do sonente cperedores de erisghs, fuv inpede o veeuo 'bare' e ser um nulc-edé
do, represectanic fisiconecte a eriagic virtual de pares.

8- is consideragies gue fisescs melon ipdienn gue ca dold vecuca Sorac Ro CRED
4o Bever intercgic, nAc sicente diferentos mce s verdnds pertoncende & eape-
gos da Eilhert Zietintcs, oo contradigio comtraldighc eo= a hipotese de goo a8
aneradores das dusn teordoas codneddos nux dads tempo, @ portants cperas o Qed

dopendends o wvolu e comid &5 ROD

zo oapego de Hilbars. :

Bata comtrodieio siocate mode Bar reiovida se oac hepwer intoeragic e portan
t- mobog ns teorios sio livien; couo querincsos mostrars

Zote tecress nho cbetnnte sun fportfincin oa teorin axicnmities dos emapas @
sus erescante splicngfo S problasss sais pritie o' , Bap iopodird eco que w
a0 formal do s expanstc da tips (I1L.7) lowe 2 resultodcn ecrreica. Iota o
dovide as fate Jo gro pama w valuse de guastisapto finiio as guentilsodes die-
wargenton cin o volw:s, como o fater de morsalisagde EYtaa galf-ener=ia do
yheus oofre: v esneeloseats no efleulo duo chbaervavsis (Eiferengon do anergle
amlitudes do worslhanontc) puboistindo pduonte oo etnpos dnteraelisrics.



Loga, meszc n. coso do volwmse de gquantizaglo infinite, resultad:s corretca ag
riao cbtidse desde cue vn suficiente cuidade seja tomados oo me cperando cem ox

preseiaen -ﬂr:'ﬂ'nl'irﬂdnﬁs[ﬁ], de onneirs & cbter wa tel cancelasents,
Ueando (IXI1:7) o

Hlo' > = 2 Jor> . ' (11I.31)
cbtemos (vide 1.7) o welhc oistuen T,3. paro o wieup fisiep

2= 26°0) [ 1, tx )ote))e%, :

(22 % )1, 05) = gly) + 58800 [ 1,00 .3 gliy)ae, o+ 8 100K, g0,
(II1.22)

LR

L'-!n-nfl'kl * smms ¥ 'kn.l] In{‘.'-:llllllffl-kn}- [‘n'lfhll'l*'kn_l-:ﬂ[.—.ﬁn:"l- *
+ #ne1)d5(0) jtmll:kl. SN I T - LI 11 P E S (U "

5 E{!‘n}]-
cnde [ ]n indicz o fungoo simetrizada en todns as guas varioveis. [lotenos gue
o fator N couss das dificuldades que love= ac tecrema de Eoap ndo comparece,
por ser un feter sultiplicative comies, no siatesa (I11.22). Fode=ca facilsente
werificar que as solugsos oxatas (I1I7.5,10) satisfazea (I77.22), como seria de
es orar. [lo aproxizagio n = & | eclocands £, = 0 paraml obtesos

3
g, -2 {u}f tl{kliu{hl}d:"kl

- a.k}flr;k:} - 5(11} (111.23)
logo
z, = 2 &m I—Eﬂ?ﬂ—sﬁ——

:ﬂ‘a !!: r IIH;“‘J -
& molugic do eqmmghio e outo-valores aproxiseda (111.24) considerands

—

ﬁlfﬂ'} = 1= H% & dadn por
Lt ,
2z - Va8 [Fuods . Latog (e)a% ' {11Z.250)
g 18 I
m resultcdo oopletausnte diferente da solugdo exata obtida de (I11.8)
e _ QEEEIII’ o, Vol - g 8% (1374255)

contude & atengho para o fato de que resclvends-oe o equagho
AIIT.24F por —edis do ven oxpanefo foreal e série de potenciaz de g obtemco
prizeira cproxizsgic En:-éilﬂ?f%%}_ Ot cofacidinds ccu o prizedro
& dc oxponcfio o série da solugoo exota (III.25n),

]
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€ fracesso do metodo TomoeDancoff oplicade A este problema (que se menifesta
o= qualguer ordsn de oproximacfe ¢ ndo sdaents parn no= 2), pode sor foacil -
mente comprendide coao sendo devido oo fato de que colocando £ =0 para aja’
equivale 2 negligenciar o= (I11.32) o termo ,,E.Eiﬂ'.l Jrl‘.' lF .....'.("; L 1}.

. Eill: - l}lﬁakn, 1 = priaam;.a do outros, o que @ tlnrunmtn i.nju.t.j.ﬂ;:u.cu- ja
que em virtude do fatord {n] este termc domina oo ;,mn. Por ocutrs lade como
a-.self-cnorgin do vicuc @ propercional no volume E. E {a) pgdmu.. concluir
que oo coda equagto Ao sissesn (111.22) o térmo mltiplinﬁﬂn puré‘ (0) serd exa
tamente cencelado pels termo multiplicade por Eﬁ. Podendo ser diretacente ve-
rificado e noeso modolo medinnte o substitulgfic das solugos cxotna e (IIT28)
este fato @ uan regra gersl independentoe do modelo, Pnsassnca egors de (II11.22)
para o sistesa 'redugide' ¥

oy
E, = aé’m:— ftlfh‘i]gf.!:lh. x5

2w, £(5) = 8(k) + & (kK e(k))
(1II.28)

s smat®

20 o e w I Uy aeaiit)) = (£ Ok el ]
+ alneddnf e ..k kk Delk )]

ende Qg diwrg&mlm da velue _15 eatic canceladan, 4o sistemn (ITX.28) pode-
‘mos aplicar o M.T.5, obtonds resultados independentes das divergencins de volu
me (o nfic sor para I & clarc) e eujo desenvolvimento cm sirie de poténcing

coincide até & potencin s
.I'.Zr. pars o mesinn agnlitude. Ja gque os Bulut;;us exatos podou ser expandidos

en sirie de potenciass vemcs que as aproximagoes T.D. no sistous reduside con-

con as aolughes oxatns na nosimn aproxicncio

| WOrgen para an golucoon exctas. Ha aproximacne n = 2 por exeoplo, obtenos ags
i

(k
g
rlmll = -

i LU
2 tl'ﬁ:ll

E = -5%0) {EE () a5 (111.27)
wik) ¥

Hesta crdem ca resultados do M.T.D. coineiden com as aproxinagtes mais bai
xos dn teoria de porturbagies. Uas tal conexfio entre o H.¥.D. o a teoriz de
perturbactes nio & do modo alpws geral, o Jdeponds estritacente do fato de que -
en nomaro oodelo cs resultadss exatos sio fungfes regularcs do constante de
acoplencnto. ;

Consideresss agera o slstems T.De para was particula de nomentus k.
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Con

k> = e E:L;_IE b 'l{ Flihllﬁ:n‘hln:kilﬁﬁ tl:’]'l:l.l R ——
+ o+ + i e
QIFH-{I:I----Enj%ﬂ?ﬂl-hlllila-ﬂ:ﬂn-nﬂlﬂ}da:{.l'-.--\_. H'.nlu..i.i {Illlﬁnl

chtemos =
(z-w) = 28 tﬂ]}rFllz;:gLEI}dskl v & Fy(E)gt)

- & i .
(2 - wo2 w ) (k)] = g Ony) + 66500) [Pty 60e)e%, « 8 7,00k detk,) +
+ 8 7,0k K)50x)
{L'“-ﬂ{'h1+ TS 'kn} I'fn[!tiq---.!:nl - [rn-likl'"hn-].]ulhn}]a ", tlIlimj

- 2{“1‘1153!-{’1 J F t:' saeai K iﬂrhﬂ.‘l‘l]dakﬂil* 4{!*1:“[‘F=+1tkllqih E E :i

5

n+l 1 n nel =10 &

v 8150]) 4 elneiP. (K Yl
i X n+l '.t"”knkﬂ

Da estruturs de (IIZ.28) podemcs ver o que tomben pode ser inferide direts-
mentes dn homiltonisna (III.1) f.¢., que & self-snergin da partienln o weiessan
to devida & interferéncin do sum prosenga om processcs de vicus, nis havends oo
modele wma contribulgio rosultente da omissic o rombsorgac de particulas virtu
ais (vide diseusnsiic nn Introdugiol.

Mo mproxisagée T.0e m = 3 (primeirz pac trivial) negligenciantc cs estndcs
com mais de 3 particulas barc, cu sejn F, = O pora a>1, n seguinte equaghio
de autcvelores & obtige 3

g ik Aty & g (k)
z - wix) = 25°(0) B il £
i A 2 = wik)-2 ﬂkli 2 - 3wlk) (111,300
logo
3 i
. . wile, J g™k, 107
BE=z - faéatnljg‘[hllaanl - -L-—k‘—l-l +« w (k) (I11:31)
II uattllﬂ"hl

o com (IIT.28a) Z - E = wik) como ns enso sem interagncs 0 fracasso deoto
aplicagis ddrets do 1L7.~. ac problecn o= quistiSc & novomente Zovida és diwver-
gencics de volizse, que nodecus elizinar pelo mess. arpswento usado axterderoon
tes SeparandoE -Eﬂfﬁmﬂ- Efindopondente do volume cbteo.os w2 sistoma '"redustde!
livre de divergineins de volume. aplicando & este move sistens o mdtedo Terne
Dancoff obtercoos scluctes indepondentes de voluse ¢ que CONVergen PANG 05 OXB. -
tas. Assim paran = 3

(B - wik)) = & ¥, U g lic) (111,33} i’
(Z - wike) - fwlie, }IF, () Juplie, ) R ',tl..
iaplicondo om

T=aalxiiy Q + 4 g,_i‘ 4 (11X433)
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L melugfo (+) tende £ X = 3 wilk) cuends g = O correspondends & un estade
com 3 perticulas. & solugoo (=) da a encrgia aproximals de particulo flsica
I

Ee2 s "l"r'lrk ok R, ﬂa::i:’lrh concordondo até estn potencia do [ com
a soluglc oxata dnde por (111.5) Eu Ve, - dpg, .

B interessante comparar os nosscs resultados anteriores com o8 que sordc
dodos polo mowvo M. Y.D. Pixando nosno atonefio no problems de usa partieula ob-
temca cen F(ik') = co'lnle') 1k » @ ¥l =Lovja* -k} 1 kS o
siatean (vide I.II) '

(-2 )PCIe') = w (0 0F (')« 2 gle)f (2D

(-5 05k 1) = = wikn) ¥ (0] - 2 gle') Y (") {111, 34)

Uscnde agora o fats de que J{|%x') = fl-k'|}) =¢ para k # k' , siaples
H-n.lnqu;nnin da invarianeia translocicnal da teoria, segue=-80

E-2 =B lary -i,- 4 gf (111.38) -

Ohtemos nssie imodintomente sem nenbuma aproxiongdo e sem difieculdades pro
vanicnten J¢ ﬁi“rﬁ';ﬂﬂ-il‘ do voluse o solucae expts de noesec aodele. O fato
fo mer desaccosanrio fozer guolguer aproxioacao results do o acESO wodela el
crever soaento efcitos de self-energin nne dnnde luger o espolbascnto entre
as particulas, ¢ que love £ usa deccopomiche de mormaluente infinito nove sis
tema TwD, oo sub-siotoons Tinditos.

Por cutro lade £ dupla rais de (111.35) ilustra o ponto mencionade na In =
troedugio com respeito & insuficionte carseterizagao do vicuo flsicc no novo
método., isais a solugieo O = = V IE = -;E;E corres onde 4 um intercaszbic
6% = |1,=k> 1, k>=|0*> ou seja no torminclogia de Dyson
& pressnga do wma partdcula no estado de comparacio (estads bre.} Zotn mmlti-
plicidade de solugies manifesta-so toobaa no cnleulo dos estadcs mais cleva-
dos, por execplo nc caleulo do eatadeo com duns particulas flajcas as raizes.

: if: -G EI:” i Vel -3 By sorne encontradas, das quals scacn
i | 1 g 2
kaie v 'h*:l- 4 EEI . ?'rw;z- q-g:a corresponde oo vaeuo flesico cous veton:

. bro. Huoa teoria que lovn o capalhnuonto os diversns solugten oparccerion nco=

. pladas ouma oproxiongac, levando & aparentes proccssce Jo produgio a reiccs,

gue sodos oor elininades segwndo uma teenien introduzida it Drnun[m o Aper=

feigoada por Dolits o Jyoon ?j
£ oportuss chomar a ateagie para o fate do que o interpretagao uwsonl de
J = ']":'ﬂ= =™ eoowo mende mma fungfo de ondan generalimads porn o eatade |4
‘sal—l'a = O == o L
¥aoi=

¢

deve sor toonda com mebla reaorvn, J& que nesso para cotados

normolizeveis < % ) 4% = 1 teoos gue nRe ndoente e J'I: '&qln'li.ﬂ |31:naﬂ.;..

n;a alal
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- 3

=08 tosben | "-f' En,.;]l 2, = o2 para todos oo ternus exebts o8 pri-
! meirea do uari._. F'hﬂilﬂllﬂ-ﬂ verificavel em nosso modelo cate fatc @ uma pro-
I priesdade geral de gualguer teoria rolavieticemente invarisnte. o infinidodes
en questio ofic diverpencins de volume guo assim meanifestas-se tosbim no mowo
métods guande @@ procura acrazlizar ao novas aoplitudeos. U resultodo guo ob=
sefvoros ceize ogtd intizomonte ligado com o hao ortogenalidade. doa mt.u.-;]@_ ;

I;I-n-ﬂ;n a lt.i' A Rl'l 10‘}{2;} implicande por ua lado es

B T nEn _— il ‘-I*I’In.n.'!li a, 4, o quo torna dubic o significado

i flaieo das novos omplitudes, e refletindo-se¢ por outrc mo estruturn nic here
I mitidna o novo sistemn de equagoes, come ja pode ser viste de (I1I1.34).
Analisaremcs finalmente o comportacento das velhns o novas amplitudes no
noBeo l:ﬂ;l-ﬂ'-' guande ¢ nuzere de operadores tende so infinito. Pars fixar ]
ideias eatudarescs as amplitudes vacuo-vocuo, sendo imedinte g gencralizacdo

PaATE wa eetady quakouer ng dado Ker &a sapllihude.
is integraic Ce nomaclizegoo das volhas ¢ novas amplitudes ofo coo (IIL7.BM)

dadaa por
" : & %
ﬂn 'Jrnlhi'"'h;}tn{hl"”'n]{H[nlrin-k'n'“"nl':nn-knm::d him!i'ﬂ ]E;ﬂkl-tiﬁn-
(111.38)

2 al 4 o
"_'_E tph O, Jeasatph @k, )& [k, +k | . ., T e
i l' 1) 'I:E & "1 & in 11* 1n+1 III'11 l'En .iﬁ

T ﬂ:lr ‘-Id.hh

I fu: 0'lay +ereetisg 10" > 1%, = (111.37)

F

'L h.ﬂ U‘{tilji.llt ﬂ':nhaq{kin}ét:i 1 ..i llllil-l-l

e 2n! !
?lnl}z = 2

o =2
EEEES !l&{hi—n" kih}qulqi-. im&l

Enbora scbog na oxpressces (111.38,37) sejem diverpeates con o aesiza pntfg
eie do volume, podomcs o gUosso medo dizer que como tgh @ S 1 L

/2 o ; J
& y (¥n) 1/ . ol norza da velha caplitode tende o nm’gﬂ;_

2 (a1)® .
Por sutre 1lndo nfc ha rostricfo sdbre senh 2 € ® parc -opstontes de seoplomens  °
to suficlontomwente fortos toroocs |een h 2@ | 5 = ¢ o norss da nowa
smplitude (I11.37) divergird eom n.

Pera colscar oo afirnag-os ocioa ew foraa mais rigorcsa tomoocs provisoric
mente un volume Jdo gquantizagio findto V o wm cut-off auxilinr tal que gik) =
s 0 pare Bl K

Cemporande com o ag. II11.15, aprupando o nesima potoncia de (tgh E-]E ncha=
mee facilwento
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. Hed
e L

o ¥ 3 L 1
0 £ I-%J ( VK s e® {10z(1 - x)
n <6 fg; altl A a2m® 3 } ax™ . }: =0 (I11.38)

- # = v a 5
onda I & o maxioe de (tgh ©)°. Come o desenvolvimento en seric de potencios

de log (] - x) principin ¢on x temes &
v
n L ¥y f -
P s B YR el sk )l D A (e SLERTE
1 R L6y o = =0
nt &x" \ T b ‘%=0 n! o
(11f.39)
3
Tooands agora @ eono o priceire inteirc maior que : 1'r12 obtem=s
3(2
n n Sy
{lnﬂf__ {n.*é—!-n-r.- (n+o=1) E E_ in +a =1}
(o - 1)1 fa =11 1 (IITI.40)

e para u@ n fixomos arbitrarissente grande temcs 0 —+ 0 para n === it que

£ <1. Do mesua pancira podencs mostror que os novas ssplitudes tendem pars in
finito com n  desds que glk) secja tal que |senh 2 ﬂkl & para alpun k. Chio
mos nesit .y  titério pars dar wm sentido A wuestio do convergencia ou afo &
gerc des emplitudea, quonds n tonde ao infinito, & despeite de divergencios
de volue. Cs reseltodes que obtivemos comparande as velhes o novas applitudes

ll?luu caso do oselilader ancrponi-

re¢lacican-ae com o8 encontrados por Symansik
€O

0 nnl ecaportanento dos novas  amplitudes nac teve i.hl'luam:i-u- nos calculos
que fizemos por medo do novo ¥.T.D., ji que cm nosso aodelo ndn “ouve necessei-
dnde de fomer qualguer aproxisacgfes Nemsa teorin onis reslista e..:udo, onde
toraa-se necessario aproximer o sistemn T.D. infinite por meio de sisteans fi-
nitos, un tal cooportasento das asplitudes quando o numsere de operadores tende
ao infinito, alisdo & nic hermiticidade do sistema, deverd influir desfavora-

voloente guanta a cnnvnrgimia das upm::l.r.mniﬂ 5# i:lugﬁai oxotas.
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pibropes X ux 2 L MOITOE TEMPOS

1- UM MWCDELO SOLUVEL COM Mlﬂﬁh‘#

Discutirecos neste capitulo um modalo goluvel, local e convergente da tooria
dos cmapos, com interagdc direta, (Acoplamentc de Pmltuj.’

Mossc propieito principal serd o de fazer um eatudo comparative entre os
matodos Tamm-Dancoff & um ¢ 4 muitcs tempoa, aplicados ac caleulo da massa de
wm estodo ligado muma teoria unificada, i.e. wos teorin onde todas as massca
cparecea com efeitos da interagao.

© modelo & foraulade de modo a apresentar certas semelbangos estruturais com
mma teorin mais realista como a de Eninn-htrgm], permitindo uma discussio sime
plificads dos métodos & ideins usadas péle grups de Helsenberg, ben como wma
interpretagio fisica porn as aproximagies eupregedss.

Uma self-interagio de um compo foruionico correspondente a use oassa 'bare!
nula, pode dor lugar ao oparecimento de uma massa fisica diferente de gerc ao
mesmo tompo em .qm introdug forgas de ligaghe entre as particules fisicas nas-
sivas levando & oventusl formaglio do estados ligados. (particulas compostas)

Muito embora um tratamente rigorosc desta idedis que constitui o base de ai
VEerscs O8QUOLLLS unifil:ldmm “}amﬂu nio tenhs sido desenvelvido, o bem mcor
do entre as massas caleuladas pela teoris de Heisenberg e oa valores m-r&;‘“
mentais, noa levo n., portiddo de particulas 'bare' de massa nula, tlnt-u.nl"m‘.l.i
gito este aumsnto simultanco de mossos @ efeitos de ligagaoc X ‘s @ p analisar
o significado o & eficléntin de diversces nétosos de aproximagéc na descrigfo
destes efeitos. A impossibilidade de, no presente estagic da teoria quantica
dos campos, discutir rigorceamente estes probleans, nos leva a aborda-los u.trf
‘'vos de oodolos que embora suficientemente simples para serem resclvidos exa*=
mente, possunn pelo mencs parte da.estrutura gernl ¢ propriedades Que A8  wOw
rias reslistas sBo supostas conter. o

Muziz teoris roletiviastica de wum :nmpnf (x,t) em self-interagie descrevendo
particulas 'a' seoplados, por meio de um hrnn de interagio de Feray mw;ll?'
podemca decompor catn interacho num terus da ligacdo a'a’an ruprmmtnndn a
11551::;:- {ou espalhaments) de duas pnrth.ulnl ‘a'(vide fig.5), wm termo deo

‘drescing' a'aoco + atata’a. correspondendo 8o gml‘iﬁn da fig.8,
dando luger & efeitos de self-massa, ¢ finalmente térmos e vicuo n'a’a’a’ +
+Aaaan responaaveis por processce de flutuagao de vacuo. Os ope

radores a° @ & representam operadores de criagio resp. aniquilagio do uma
partidula 'bare’ 'al.

No que segue nac consideraremcs termos de wacuo & cujo estudo dedicomos ip
teiramente o capitule III. A despeito destno uinpuﬂnnqiu um trotemento mm'
dos téroos restantes esth ainda acima das nossas possibilidades ja que nio
podemos levar em conta o iteragic completa da parte de 'dressing' .



{(Veja=oe o capitule V para uma tentativa nesta diregas).

i pimplificagio essencial que leva oo nosso modélo consiste na substituigas
do térmo de '‘dreseing' por a* bbb+ ' e correspondends as diagra-
ma da fig. 7, onde b° o b sAo operadores de eriagioc e aniguilagae de partieu -
las 'b' descritas por um novo campo "f;h.t]- Obviamente em wirtude da falta de
simetria entre operadores de criagioc e aniquilagds no térme de interagio, o mo
délo @ nio relativistico, (vide a discussdo do teorewa de Haag no cap, IIT)eep
do agora contudo exatamente soluvel. _

Tomemoe as particulss *a' com uma massa bare arbitrarissente pequena, de mo -
do a poder considerar a sua enérgia em repouso 'bare' - em contraste com sua
energia cindtica - como nulm, O papel das particulas 'b' sera o de '‘vestir' as
particulas 'a' fornecendo-lhes umn onergin em repousoc fisica (digamos massa I'i
sica) nio nula, Eata mossa ¢ facilmente caleuldvel (pegio 2) e & uma quantidae
de finita, :

Mostraremos gue este processc de 'dressing' @ o unieco efeito para o qual as
particulas 'b' contribuec. Elas nic ae monifestom em qualquer cutro protesso e
serfic finalmente eliminadas do modelc.

A teoria assim cbtida & local o finita tembém em estados com maior nimero
de particulas do que os explicitamente calculadcss U estado ligade de duss pap
ticulas 'a' o exatamente caleulado (segao 3). Encontrao-se que cate estado liga
do (digamoas meson) & inteirnmente devido & self-interagioc daa particulas mapsi
vas 'a' (digsmos nueleona) i.e. ao térme o'a’a o sem participagao de
particulas 'b' intermedicrims & ndo ser nc que se refers ao 'dressing' des pag
ticulas 'a' 'bare' de massa nula (digamces neutrince) m_pu-t{nﬂlu massivos.

0 modélo esquematizede scima ¢ certamente muito simples, “a que ndc o impede
de possuir nlgumas semelhanges estruturais com umn teoria relativistica de par
ticulas elementares do tipo propesto por Heisenberg. % importante motar contu=
do algumas diferengas essencinis provenientes do cardter nio relativisticoe do
nossc modéles : :
1= A distingRc gque precisamos faser entre DASSR om repousc {energia om ropousc)
@ mosaa cinética (massa inercio) o que @ nao existente numa teorin relativieti
camonte invariante.

2- Imbore venhamos a fazer usc do umn métrica indefinida ne espage de Blll!lr‘l-m
o sou papel sera aqui completasente diferente do que elo tem na teoria de Hed-

senperg. No ultimo caso uma métrica indefinida & utiligads pars essegurar resdl
tados finitos que em nossc modalo sao obtides de w= modo ccapletsmente distip

to. £ também obvio que nada pode mer inferido do nosac modelo acerca do comper

tapento de uma teorin reldtivistica nns viginhangns do cone de luz, que conati

tui o problema central da quantimagio nde candnien o la Helsenberg.

in solucies exatos do nosso wodélo seréo comparsdss com os resultados de di
versos métodos de aproximagio, (segie 4) dondo-me um enfose especial me mitode
Tam-Dancoff. !

A teoria de perturbogbes @ aplicada ac cilouls do problema de ume particula
converginde para as solugtes cxatos a deapeito do presenga de produtos singula
ros do tipo lsrla ao chleulo da self-senergic da particuls 'a'. (segao fa).



37
NBo fagemos wao do M.T.«. neste problema ja gue a priseira aproximagis nio tri
vigl corresponde 2 solugde exnta.

O problema do estado ligado & tratado es térmos dos 1.T.D, & um o 4 muitos
tl-;ﬂl (segdes. 4b @ 4c respectivamente). Na segio 44 mostramos como o M.T .

i muitos tempos na aproximacdo m = 2 & formalments equivalente 4 um sistesa in
finito de equagCes 4 um tempo. Para completar o estude discutimos na segho 4e

a aplicagio da equagho de hth-&dpttu“”un proble=n do estade ligedo. O
resultado de nossa analise ¢ dg que o M.T.D. 4 o teopo - cu um metodo varisch
nal lwl:ll.l-iﬂl"*!n'lII::li-l'I::’:""}I da lugar & sclugdes com energic negativa na aproximacio

n = 2: o euséncia de uma correlagic de tempo relativo entre as duas particulas
'a' formando o estado ligado, impede na ordes mais baixa o apareciments das oy
¥ens virtuais ¢ mosses destas particulas, Isto implica que ficamos com duns
particulas de massa nula (neutrinos) e sémente & snergia de ligagac d4 s sua
mntribuuiu & energia total. Por outro lado o formslismo 4 muitos tempos (no
SaBo a dois tu:p“} na meésn: ordem n = 2 fornece sclugdes gque podem sor de ener
gla positiva ¢ sdc pelo mence qun.u.t.nuﬂ-nt- aceitaveis. Aqui a existéncia

de uma correlagaoc de tempo relativo impliea no '"dressing' de precissmente uma
das particulns constituintes do estade ligade onquantc a cutra permanece 'bapgt
@ som massn. Kois precisamente uma dos partisulas conserva a sua nuvem e portan
to sua massa, enquanto que a nuven da outre ¢ negligenciada na aproximagio

n = 2, Portante embora positiva a massa do estado ligado caleulada pelo ¥,TyD,
- & oultos tempos em nossc modélo, . édferird do valor exato por precisesente uma
massa de particula 'a'. '

No cosso modélo a aproximagio n-= 6 do método 4 um tempo corresponde & solu
¢80 exats, fato que é a csusa da sclubilidade do modale.

A equagno de Bethe-Salpetor na aproximaghc 'eadein' taobém da lugar a solu=
¢io exata, © que pode ser facilmente inferidc de uoa anAlise dos diagranas de
Feynaan associedos ac modelo, jA que neste motodo acbas as particulas 'a' eati
"dressdd" . :

Os resultndos dos diferentes metodos de aproximagio aplicados sc modelo con
firmam portanto o que seria de esperar de sioples nrgumentos fisic:is baseados
sobre os dingranas de Fr;rnnu.n.' Contudo, & generalizagao de nosscs resultados &
teoria de Heisenberh ndo ¢ uma torefa trivial j& que nada sabesos sibre as so-
lugoes exatas desta teoria, o somente ns aproximagies mais baixas foram até
agora tratodos. Embora venhn o ficar elare que o método Toom-Dancoff A um t ot
PO, O nio ser que convenientemente medificado cose no cap, V, dard sespre p-h.
sinos resultades numa teoria unificada, a eficisncia cocparativa dos métodos &
muitos tempos e Bethe-Salpeter -@ fortemente modélo-dependente. Obwismente, co
oo discutirescs em paior detalhe na se¢io 4, em nproximagdes mais clovadas 2
teoria de Ecisenberg nio sdmente a massa dos particulas olomentares tenderd a
aumenter pdla inclusfo de efeitos de 'dressing' mais elevados, mas tambim a
energic de ligagic, @ s¢ o bom acorde com o experiencia obtido na ordem mais
baixe do M.T.?, & muitos tempos tiver que ser santido, este numorto deverd ser

easencialmente o mesmo pora cs dois processos.



Se eate for o coso, teremss que na teorin de Helsenberg o mitods Tomm-Dancoff
d muitcs tempos serd superior &0 esquenn de Bethe-Salpeter, contrarisments no
que acontece om noaso I{H’;lﬂ'-| obde todoa os termos de ligngfo ficnm incluidos
35 na sproximaclo wais boixa, o scmente corregies ace térmos de 'dressing! apa
recem om ordens mais elevadas, :

Quanto ao problema relativistico de umc particula: neste caso tericmos que
resolver um sistema infinito de lm:ﬂﬂ. ¢ no metode & um tempo, dificuldades
Hl-ﬂ..timﬁﬂl com o do aparecimento de solugies com energin negativa para o "!
tado ligodo Ellﬁlﬂ -II:fII, moni featan-se oo gualquer ordem de aproximacho, Estas
quostdes serdo tratadhs ne cap. V.

No ~apmdice A o propagador d¢ estado ligade sera determinade fagendo-geo
ueo do fato de que a teoria de aconlemento de Fermi & um cosc limite de um aco
plomento de Yukewn quando o massn 'bare' do neson interwedinric e a constonte
dé acoplemento nflo renormalizeds tendem 2o infindto WABE : esta equivaline
eia permite toobém um aimples cdleule do esgalhemento de duss gartlculas 'a?
uenndo as regros usuais de Feynman para tecriss de tipo Yukawa. fc mesao teme
po o coargn mosonica (ou eletriea) i.e. o constonte de n:nplulnt-n rnur-..l:l..‘m
das teorias usunia, aparcce com uma bem determinads ccnstante estrutural do
modelo.

Hoa apendices B a C alguns tiplecs relacisnados com o podele serdc ““‘ﬂi
dos e

2- FORMULAGCEO DO HODELO - © PROBLEMA DE UHi PARTICULA

Bojem 'Fﬂ e “'i canpos gquantisados descrevends particulas 'a' o 'hY reBpey
co cperadores da eriagfio o nniguilagio a%e ay b*e b. Quantizareccs ombos oa
canpos de acordo com uma estotistica de Bose, j& que & quantizagio através da
sotatistica de Formi, para levar & uma interocfe direta ndo nula, exigiria a
introduclo de grows adicionais de liberdade (ex, spin, particuln-anti-particu
la) dando lugar A UEE Cero :nnpu:w;in nl;&brinn & nas alterando & eatrotura
geral des resultados,

v qunp'u. 'a' serd quastizads de acorde com uma métrice positiva definide

[\ru,{:'lt'} 'l:'r:[:‘tit-]] = 5 {x = x')

(Iv.1)
[ ali)ya®(k')] =80 k - k')

0 compo 'b' merd quantizade de scords con was nétrien indefinida,; para que
o massa (energin em repousc)™da particula 'a' risica seje pﬂil‘.n.ﬂ {vida o ai.
nal des eq. IV.9,13)

["l'hi:.th 'nl"; (x?,t) J s =&(x - x1)

(1v,2)
(0, b* (k') ) = =l - x!) 5




&8

A mossa da particula 'b! 'bare’ é M A 0. A energin em repcusc 'bare! da parti-
cula "' & suposta ipusl a merc i.e. o térme m LF;'Fn & negligencicdc no homile
tonionog

Como j& mencichemos acima , em virtude de cardter ndc relativistico da moda=
lc ndo é possivel tcmar o limite m =0 na parte de energia cinética da particu-
la 'a’, ;

De acorde com o que foi dito na seglo 1 & hemiltoniana do rodéle sera

Hafoxiis VROV, - gV 0% -u 0/« @Oy RV W ¥

+ (207 L,(WHRY, « TR, ]] (1v.3)
cnde :].lﬁﬂl.?h. sdo constantes de acoplamento reais. Nos taruos de interagic
'lf; ‘: vr. & 'l’; '-l; ~I': Y, ¢ c.ea incluiccs tacitamente "1 gois

cut-offs cuxiliares Hl ¢ K, que restrigem o momenta & valores {11 oLk, respec-
tivemente, Eles serdoc finzlmente eliminados de modo que o teorin serd losal no
limite EJ. = oo j.:z -

Tomemos agora M arbitrariomente grande e consequentemente podemos neglipen-
eiar o térmo de energia cinética da particula 'B' F l:ﬁ'thms. na hamiltoniana
(IV.3). Ficard clarc em breve que sdmente no limite ¥~ +~poderenos resolver wxa-
temente nfo 86 o problema de wma particula 'a' |, nos tasbés o problemn do esta-
do ligado.

No eapago dos momenta o hamiltoniana ¢ escrits coms
2 ;
- * : o, ¥

: {E[klﬁkg-k:-hih y (IV.4)

* Bp [y .oy |00 G tepdaticdecuc, | S0y Lxp

onde & seguinte notagio @ usada naste capitulo x = x, K = 1:,:!3:: -d:,dahudk,
§°(k)=d(k), com K = e =1. Note-se que om (IV.4) k:.{Ef reap. :‘.E.
Seje agore |0 o vicuo 'bare' do modelo, codncidinde com o vacuo fisico ewm
wirtude da nusencia de termes de flutuagio do vécuo, de wodo que H|O» =0.

€ estado de uma particula 'a' fisica comomentu: k pode ser escrite cowo

4
la,k> m'[k}ln}+jdkldk=dk3 Huluﬁléth-; kllh'thllh‘{halh*tka}lu 5y (Iv.8)
Com o equagio de autovalores

Hla,ks a3(k) |a,k > - (Iv.8)
ocbtecos de (IV.4,5) com o ouxilio de (IV.1,2) e 20> = bjo>= 0,



= ]
Blae> = {5 - 3 1l [rlxper8 (k-] kD e an | o* ) 10 4

3 (Iv.7)
+f ok, dispdicy § (k -.i" ey ) (503 MEQk ok )b* (1 )b* (1, 00" (1, ) 153 = Ela,iey
loge as equagoes
(-3 iy ky) =20 (6210 (KE-k2)0 (5-12) (17.8)

:z,.uﬂm - -z:,‘lgjﬁldxaagxﬁklkak s z k JOUDOE2)005%2)  (1v.9)

onde o cut-off foi explicitazente introduzide atraves da fungio de Eeaviside(Q).
is equagces (IV.2,5) dioc para 3¢ IN

B-k? 301Gtk -2 ) : (1v.1Ca)
=
cnde
3
Glk)= f e, ok dk, § (x - T ky)otry o (o i k) (17.10b)
: .8 &
hpis uz edleulo simples obtemos Glk) = X lz g by « Lego
6.5 8
- g el gt + OUp) . (1v.11)

3K -2
Tannnn-nm-uuuittxz-hw. Mo de medo o ter

E.:Lg z::ﬁm M -HLJ.: >0 . o fimite (Iv.12)
donde

L 5 vi,wiid
Ew E - nﬂ o :!I:I:?.]-i w0 {IV.13)

Claramente o ¢ a energia em repouso positiva gue a perticula '»* senha atra
vés de sus inurlq;a.n- coa particulas 'b' virtuvais.
Ife lizigdte B =+ oo, H!‘lkﬂkz] conporta-se comc

flic, ke da = Apf3 W (1v.14)
Logo neste limigétc |a,k » & um estado corretaments normalizado
<myklak'> = S0k (1 - 007Y)) (1IV.15)

e tanbéx teccs que |o,k3 = a’(k)|0> .
Ho ealeule acima nie consideramoa estados descrevendo o espalhasento de 3
particulas 'b' §& que para issc uoa energia I3 3l = »* seria necessaris.
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d= 0 i DO G090 LIGADO

) C eatado ligado de ., duas particulas 'a' tomadas no sistema contro de massa
(k=0) & ealeculads com o auxilis da equacde de autovalores
Hl2z > = B |2a% (1v,18)
onde para [2a > = |2a,ked » fazemos o 'cnsatz’
22> = [ak f(kla® (x)a" (k) |0 > + [ax ﬂ:lﬂlﬂﬂksﬂhklkzlls}ﬂ[h-ﬁtil'b (e, Jb* (e, ) o

b tk,,:.f:-u:-m} *J.na:. vlighlky voon kﬂlﬁ{ gkﬂh (k) s’ lkg) 10> {IV,17)

ipbs um calculo simples o seguinte sistema de equagdes sera obtido

2
(2 E3e0i) = 2 1:[ mﬂx-1-::.1#&1%@33{“11:21:::&:::- ;‘_ k)

{1va18)
e 3
{u.. B~ 3 H.‘rl:lfhl'tfts]-aliﬂhll & (k- g"i"' .
[ 3
S sl‘.lifn. e die, Bk, .. kg) & ( ‘; k)6 (k- T k) (1vg18)
: 1
3 8
(Z = 31M) hik, ...k )b ( ; k,) = hli.ﬂﬁ ke, be kel ) t; "1’}5 ; (1v,20)
onde o Indice s indica simetrizacic em todms am varicveis.
De ~{IV.20) introduzinde em (IV.18) encontramos
3 )2 1
ol s Rt o
(£ - E :i - 3K gi; ky ki) = - 51 [L/(2- Jn.}]j’m‘mnsmu.
3 6 3
. 1;.; t; Iede, k) & [¥ uil]. 24, H}‘ k, ) (IVe21)

Para obtermos scolucces explicitas do ncesc sistenn tcacmos o limite kﬂ-lﬁ ]
I e, Emtdo

- e il
;(‘? Ky kkks) = - llzlt}i: ke, }/3 M+ el -.13 TR T e ﬁ F P

: \Ivg22)
ande
8= =38 ::a.r?' oy Kgly) e Ky X" fdl:dkdha .t" 1|:H|:k:|&l.'-'!:}+...
+..:=u:1...1='h,.. (1vga3)
de oodo gus

" v, 24
13| =811 ﬂ}:kl.klkitaﬂ Lg_'rﬁ_)_ L )
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e portante de (IV.22) wsando (IV.12)

3 3
6 ki) = - 228 #(T K, )/3 00 o7h) (1v.28)
1 |

Substituinds (IV.25) am (IV.18) chtewcs
-1 2
E k°)t - 4] a 2] i
@ 2000 = [ $z]) saeC) + [ areeen (1v,26)

¢ portanto com (IV.12) G(k) dado pos L(IV,10b)
2
(B- K= - 2 (k) = 22 J’m-nm (1v.27)

De (IV.27) & meguinte equacdc pera a energia & do estndo ligedo @ obtida

iz
—

=

Jair:l !:E (£ -k _ 2 uni'l- m;rll con Xy o (IV,28)

e por integragas
n“*:a;n..m” 2 Fr:tgl:zl,ﬂ:aun-z‘.i”znl"' o ay & 1/8%L . (Iv.29)

Touando agora K, = o= , L= -0 , de uodo que

m X+ 1/8m, — & com & finito e malor que mero
{IV.30)

obhtemoa para a energia do sstads ligado
E=2no, -3 (Iv,31)

Bealtatrl 5 (1v,32)

Reatringireocs .I'E & valores suficieontemente peguenca pers que Z > 0. Hote-
mes cohtudo que Z < 0 nAo represents ume contradigac intrinseca numa tecria néo
relativistica, Inpomoa &3>0 para manter s analogia coz uma tecria relativistica
a aalor posaivel.

Fara mcstrar que o céleculo acina realnente dé wuae solugic do problean de es-

tado ligado

: - 2 -1
E=2 -8 y Hx)=(B :-2%1
g(gk,klzzka]:a-ﬂiﬂ% EVIE-= 0O para i =+ o= (1v,33)
T 1"l a7 1

basta substituir (IV.33) em (IV.18-2C) e tomar os linites (IV.12,30). & solu-
clc & unieca se priceirc o liaite (I17.12) e desois (IV.30) forem efetuados.
De (IV.33) @ obvic que as particulas 'b' scoeste sarticipas do estade ligado

ea fornecende ns particulas 'a' usa energin em repousoc He



o

ke forean de ligeedo sac inteiramente causedes pelo térso [.a_-.ll] ]lwn‘rn desda
que no liodte (IV.12) o eapalhamento (ou ligegSo) de particulas 'a' atravis de
partigulos "B' intermediiriss torna-se aulo. O terme de interagio direta das par
tlculas 'a* & diferente de zero apeser do liaiteld = -0 ser tomado, isso por-
que 20 Desue teopo fozemos Kyoe . (¥ide apuendicoe C) )
© lizite (IVy12) mostra que as particulas 'b* taobéo ndéo se nonisfetsm e ne

nhwi progesas resl, usn snepgla T3 W = gends nessnsnrie nara que isto n:mtl
cesga, Fortante desde gue gonsideresos sdmente processca gos epargia ficite a

nossz hamiltonisna (IV,4) & equivelente o

= ' - LT " = FEET o g & ;
- @ { 1{5 o 3o fattRaldedy §dky e § ey oie mie ok Da* (i, Ja® (k)
(IVy4a)

nil:s}*ﬁh: 41

onde o ofeito dap particulss ' egti contido no térmo = . O estads ldgado & 4z
do nqui por |82% = f fix)a*()a® () 0%  eom velores pare T ¢ f(k) goincidin
do eam (IV,33), & facil verificar que a equivaloncin ontre (IV.da) e (IV,4) &
mantidn tomben en setores mais elevndes. (i.e, estadop eoa wa niero malor de

narticulas)

4g HETODCS DE  AFICKIHAGRD
He que se aegue as solusfes exatas do ncsso modele sorio couparadng com os
resultades obtidos por mele de dimerscs —étodes do aproinagio,
0 propageder da partigula 'b' & dado per

8B(x,t) = SBlx =xy,tyty) & < OIT Hylxyat, Wi Gxy,8,010 5 =

4 i pley=x,)-ip (¢, -t,)
ni{aﬂ‘l,l’d‘p{pn-;iuf_,}‘ln Gt {Iv.34)

coincidinds com o porpagader livre cono pode ser fociluocte visto dos diagranas
S = &

da l'qm.:i:n correspondentos, Usarc.os @ notagao X = X,=i. , = tl- tydx =

= dxdt,d'p = dp dp,

:h‘.:p ::p-tp ,H[t] =0 ouloporat~=0 out >0 resp. :ml‘ﬂ indijnnos o

mi.-ﬁu.dn ne up-m;a o 'F ﬂprﬂmtu a trassforuads de fourrier

l,p —i? -
31 = {Eﬂ-i[d - ¥ fr.t X e
o pee inveraos
hgaiz ;
b 5t o (4 1p/ (o = b+ $E) (Iv,35)
Splxit) = F, Sp(n,) = T {4 29/ (5, - Vi e .
a

& =ikt .
Sglx,t) = & (x) o(t) e * (IV.38)
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0 propagador exato da particuls 'a' @, no limite M =, Kg—=0= , dade por
2
- i =
B;ht,t] - BI T"-l"ﬂ{t].t:} w'; {12|tn]|n' } “3.1 IL i/ {Pq t% - hn]t E;]
T Eelp,) (1v,37)

Da hamiltoniana {IV.3) a serulnte cquagao de movimento parm o campo 'a' ¢
obtida

L 3 3
%‘l'% « - By ¢ 20 VWY o0, @YY (1v.38)

Observamos que a teoria ¢ invorinnte sob s transformagao

‘r;“wa I:‘ 1LI‘: _ﬂ‘l’: e =19 w’a .i'ﬂ.."'ﬁ ¥ ‘I-':___‘i'; '-iﬂﬂ {1v.39)
donde Be sepue que

COITVE 1y Woipy 10 7= £00 DY (W (3105 = L0IT W, () Wit > -{: ]
V.40

n= Hétedo perturbative para o probleoma de wma particula
A self-enercia de uma particula 'a' , dada pole disgrams da fip.7 , escrove-
- = vl
sa de acordo com am recres usuais no cspap das confipuragoes

Pix,t) = 1 31023203 (8] (x,00)° (Iv.41)

ende o terme {E'l:’ deve ger entendide comc wma tripla convelugao com respaite
A transformads de fourrier do cut-off H'E' Ho eapago doa momenta

j;l I " =L tp) = t3n3/an®) s (p i, 500p).5000) (1v.42)

onde , representa a convelugio no espago dos momentm. Loro integrando sobre
as coaponentes de energla dos guadrivetores Py

31 % 2 2.2 32 2

onde o cut-ofi fol explicitmmente re-introduzido. Temos assim

Lip)=-3 !12 aip)/ (p, -30) (IV.44)
Gi{p) dade por (IV.10b). Tomando o limite (IV.12)
¥ (p,) = m (IV.45)

Usando a formula para o propapador corrigido dada pela teoria des perturbagoes,
obtomos o resultadoe eceaperando

L - |
B~ T Ty + g o i
do acordo com (IV.37) e (IV.13)
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b- Motodo Tarm-Dopcoff & um teopo pore o problece do estado ligade

Considereaoa 2 smplitude & um tempo pare o estade ligade i.e.

Ptz x,8) = <01V, (x, 00V, tx e} [2a>= 20| ¥, (x,¢) ¥, (x,t) %> (17.47),

onde o produto cronalogico para tempos iguais & definido come uan média entre
tl-tﬂ H ™ tl-tn 8 = F 3 E= O, Como nosao mnd:In ¢ invariante sob trans
1agles no tempo (conservagio de emergia), temcs

ist

¥ (xyx t) = tﬂ:l:ﬁ]' &- (iv.48)

E sende a emergia do estado ligado. 4 equagdo de nowimente (IV.38) leva A
8y - a2 3 : :
- = + 2(2m° 1, <olT: 'I':i.':lﬂ'l-:hl:lt}"’nlzit}. ¥ (x,t)[2a >

N atzm"'":r.l <el T W Geythe Wl ¥, (2 0V (28] 1]22 > 5 (1v,48)

+ @07, (<ol eV 0l >« (3170 OIT ¥, x 6 (% (,0)°

i « |22

cnde cooo de hobito os cuteoffs estic impllcitcs em (1v.48). N2 aproximagic
n s 2, (vide Introdugie); negligencinndo ca produtce normais com mais de dois
opersdores ¢ observands que o8 taracs contendo W, = (I7.49) n2c dic nenbume
contribuigio em wirtude :m1 (I/.40) ,cbtoncs com o muxilic da rogra de Tick

Y (x%p) = - Lﬂ:“flulxgl - —'E Plx,x.) + A, (2 %4 e -x,) R (2%, )4

3. (Iv.50)
+ 4, (2m% l!rlﬂl'f (%)

ume veE que

93 (2,0) = %ﬂ {1v.51)

Ilo espago dos ponenta tridimensionnis tenos o partir Jde [iV.5C)

a 2 .
e 'I{plp-al = # + 2 :'_1 f dpi dpg ‘-E[pipé] & [pltgﬁ -—pi—p{]

[IV.BR)
& B¢~ sistean eentro de oessa onde 'ﬂplpa] = I{;-J'-Ei;fpa.'l segua=ge
2
z rla) = g— fip) + 2 :J.l fdp'ﬂp'l (IV.53)

cu sejs oo coordensdas relativas no espege das configuragles (cut-off fmpllei:
to)
. at(x) + 4% £tx) -2 (zm? %, Slx) £ () (IV.56)

A equagZo (IV.54) pode ser intsrpretade com: wsa equagic de Schridinger
con va potencial & .



De (IV.53) reintroduzindo o cugs off obtsuos o equagio de muto-valores

H
,__f dlplp™ (2- B 1/6% 2 (1%.55)

A oquaglo (IV.53) ex contraste cou & exata (IV.28) afo aduite solugdes positi
vae paré a energia ja que o integrendo tem um polo para >0, Tomando o lizite
(IV.30) obtdmos a paftir de (IV.55) E = =E , com B dade per (IV.32). O aparsci-
cento deste polo ¢ devide & parte de energis cindtica do haniltoniana ¢ & wm a8
pecto geral da aproxime¢So T.l. & un tmpu.tm}]!lr.n:.a teoris relativistica a difi
culdade que nqui s¢ manifesta como solugoes de onergiz negativa, 1& aparece coco
suséncinz de raizes recis, Isto & clare j& que muwsa teorin relativistica solugdes

so= energis negative estdo em contradigfo com o estabilidade do vAcuo, o gQua
formcloente se traduz no fato de que o equacio de auto-valores covaricnte @ for-
ruladn s tarmes d¢ B° & ado de B Zucndo o limite (IV.12) & tomade, n aproxinas
gle n = 4 do matode & um tampe j& da o solugldo exata como ode ser forilmgnte
wvisto de nossa discussfio na segio 3. x .

Zsta propriedade do nosse modéle & claramente inexistento nusa teoria unifiga
da realists onde as nmasscs afo um ofeite da solf-dnteragto ¢ nAo da intaragie
goz: un segunde gampo, Jevoando 4 dificuldades do tipoe menclonzde acima em quhlqu-
ardem de apreximagic. (wide cap.V) ‘

Fi{diesmento o inpessibilidede de obter sclugdes razoaveis no método & um tempo
vec: do fato de que fixande-se o tempe relative, o térue de m=nssa & no propage-
dor da particula ‘2! nio se monifests na squagfo de autovalores upru.!.l:ﬂdﬂ Isto
& perticularcente trivizl no gaso nZe relativistice onde E:[:,M -i—: indepan
deate da =ssaa,

Bdmente atraves dz veriacio do teaopo relotive 4 qua E use couplete des eguae
eles de novimente @ feito, com o consequente inclusio de efeito de 'dressing' gque
no método & um tempo, hn cproximagro m = 2, @ coupleotamente negligenciade.

= Método Ta=a-Dencoff & dois tocoos

De coplitude a dois tecpos
(=1} = & OIT ¥ bx) W (=) [2a > (XV.56)
1'*2 1 *a

obtezos conm (IV.33) com :||:1 = (x 't'i] ¢ ugando a regra de Jick

%3% ==l g2 20® <ol ]I, ()10 > < OITF DV, (x]) 22 > 4
1
+£(4) (1v.57)

onde f(4) epvolve produtes narmais de & eparaderes. [a cproxizagio n = 2 colocan
do £{4) = ©, uaande pers 3; a exprosazo (IV,37) o com

j[:{,:;} = f d.‘:pld{-pa*{?:.?;:'i =51 {p{:{q-;;:;] (Iv.58)



s

sncontranos
Vo - B 1 1 4 L™ |
Paa ™ ‘Pa) o L 4i  Pym(Ry) g
i -y
Fal |
. b {pI+p;-pI-p; ) (Iv.58)

Ho sisntomn centro de massa onde
!ip{ip;] = §lp¥)é (py+pyl H.':-pnrp‘zl {iv.60)

v ov
Z sende & energin do estade ligade o p' = P17 P2 o gquadri-cocentus relative
achacos :

D ep g = o “A [ afprara™)
3.+ %) kit = J=(p” = )+it
o 2 -& 1 '?"'.‘ = (IV.61)

Chbeorvosos que am (IV.61) temos o produto de um propagador livre i.e. o pri
zeiro termo sem 2 nassa =+ POr wa propagader corrigide. Deo (IV.8l) cbtemos

T - fdap 1 T - :
= ™ 7
F g+ 5 J-le,i 1 (g-p)4E=+,) + 2! (17.62)

& ictegroade sohra P

(1v,83)

A 2 s -1
diplp” (= - :;L - :ﬂl = l...l"'ﬁjlﬂl
o

Tomando o limite (IV.30) cncontramos

EBen -B (Iv.64)
De (IV.64) wemom que embora pora valorse de 2 puficientecaente pequencs a

energie dedo por esto npruium;.ﬁu oojz poaitiva, ainds difere do valor. axato

{IV.33) por umn massn de partdeculs *a'. Chooonde de 308}, remultade do s Taliy

C cuitos tempos nao npreximogio o = 2, e de £ o valor exoto tecos

(2)

B a, (1v.85)

& Qltima equagfo mostra que o if.T.D. o zuitos tocpos levs om conto o 'drese
sin; de somente uoc dos porticulas constituintes do estade ligado, representan
do un progresso definito sdbre o =étedo £ uwa toupo onde ¢ 'dressing' & comple
tazento negligenciade no ordes mols baixn de aprexicagio. Dovemos notar contu
do, que 2 eq. IV.55 acmente ¢ wilidn o= nosco modele porque ea aproxinagies
sais elovadas corregoes & nassa de uwha das particulns constituintos aparecerfo
{no posso ceso & particuls '1' j2 que a oesen do outra j4 cetd corretmwate in
eluida ne fun¢ie de contragds), was nhe terescs corregocs & energin de ligacse
E, que 35 om ordem mois baixn @ levads em contn exstosenta.
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MNa teorin de ileisenborp por outro lndo, o bom scorde dom caleulos efetuados
no aproximagac n = 2 do M.T.0. A muites tempos com os resultados experimenta-
is, pode ser uman indicagio de que em ordens mais elevadas nio 8¢ umn das par
ticulas constituintes sofre um processe de "dresaing' passando de um peutrine
A& um nucleon, mas tambem o energis daiilgﬂqin auments de wm valeor essencialmen
te igual; i.e, a massn de um nuclecn. Ume resposts definitiva a esta questao, .
86 pode sor dada & claro, por meio do calculo das nprﬂ:hmr;ﬁun mais olovadaos

a teorin de Heisenberp, o gue até o presente nido fol conssguido.

d- felagic entre os forpalismos & um e 5 muitos
tempos

Seja b= ty=t, o tempo relativo, T = (t,+t,)/2 o tempe medic. A amplitude a
dois tempos (IV.56) pode ser escrita como

$ {!I.,I;} = §(T 'E'T-E'II:E} . 1T, E,:lxtl (IV.686)
A equagao (IV.57) em térmos de x &
$ 3z (T.5) + 4 aplT, B) = a1 3 (7,8) + a{zn‘"a,_s;l.m 2T+ /2,0) (IV.67)
At 2 aT 2m
onde¢ a dependéncia dns coordensdas espacicis nac o escrita explicitamente.
Com (T,E)= x(%) e~ BT btemos
5 =iE f2
12205) « Ex(B) = - ale (B) « 20207 2 5pl-b) ¢ xl0) (Iv.68)
a6 3 2n
parnZ = 0 a equagmo (IV.88) com (IV.51) ¢ escrevendo 3(0) = 1(0,x) = fﬁl:'.' le=
va a
Bf_(x) + & £ (x) - 211{2'-']-""6{:}1.*“{:: = - 24 £, (x) (1Iv.69)
onde

*

n- (38), oot L GFLa. ot Sl

A equagdo (IV.68) difere da equagio & um tempo correspondente (IV.54) pelo
termo -2if, (x). A consisténcin exige que -21f, (x) = m_ fu:l:l para o8 resultades
dos chlculos feito com o M.T.J. A muitos tempos (IV.63) sejom reproduzidos.

ror diferencigac sucesaiva da equagac(I¥.68) somes levados o um sistema a um

tempo .

a1 pd ) (-1£)7" 1"

Gl £ 0x) wBE Ax) » B (x) + 220?27 L2)(a-1) 8(x) (~1B) ¢ )
= i Wi el AI;I-D 2™ 1 j1(n-1-5)1 £

(IV.70)

13 o 3
ﬁ'}:’n "2 [ﬁ Fa-1 ]s:—i ro " &ﬁfrn-llp-r-uj' % 'i:':s:ﬁ'”ﬁ. - ‘E‘“',E"...UT

De tl'l'.?'ﬂj VemGs [ue o tli-tﬂrdﬂ A sl tos t&m:pn. nn upmiuﬁiu n= 2 ; fnr:-...l
mente equivalente 0 um sistema infinito de equagics A = tempo.
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Fica também claro ae (IV.69) que E precisacente o diferenciagie com reapeito ao
tecpo relative que fax sparecer o térmo de ansse 2 .

e- Equagio de Dethe-Jalpeter

i equagio de Bethe-Salpeter para o estado ligede de duse partdfculas 'a' & da-
da por

P(<Y,xh) = -2 (271 f a*xrsp(xl-x1")8p (xj-x'") " x0Y) (1v.71)

onde F[:I:l:;.'l ¢ a amplitode E.8. {ﬂiﬂ;{:;]‘ﬁnix;]ik"; 3 lcoincidindo & elarc
com & emplitude & suitos tempoa; a aproximag¢fo feita pera esto amplitude & que
conatitui = diferencm entre od dois cétodos.) Faoponds = troanaformacse de Fourrier
de (1v,.71)

¥ v A Y 4
I‘[plpﬂ._] = -1‘__%-1_. -E:. Ip:]&;[p;])f d"pyd"p} FI;*IPE] S [p}+p;-p':-p£¥} (Iv.72)
@ no sistena centro de massa o seguinte equagho de avteveloresx & obtida

1e-14 jd]:nﬂﬂ 8z (papy+ BYSQ(=5,2-n ) (1v.73)
I 2 E

L

Integracde sdbre p_

=
H.I[ alplp®is -g_a-a:u}'l = 1/8 W) (Iv.74)
A equaghe (IV.74) coincide cou = equagae exata (IV.25) coco seria de esperar de
wma asnalise dos dicgramas de Feynoan.

Da equagao (IV.71) infericocs gue se asbos o8 -ropagadeores sio substituides
por propagadores livres o reaultade de i.T.D. 2 u== tempo © reproduzide (eq.IV.55)
@ sccente o energia de ligagao da sua contribuigfio A energic total(fig.%a). Fer
cutre lade canter un dos propaghdores "drossed'! corresponde preciscmente so nnit.g
do & dois tecpos (eq.IV.83), que descreve assiz o ligagho de uma particula sasei
v& £ uoa sen nassc. (fig.o0h)

do esguena de Bethe-Salpeter vemcs que achas as particulas sstio 'dresaed!,
(fig.%c) o consequentenente o equggno de Bethe-Balpetor na teoria de Heisenberg
(equogio esta que clim do mais séoente pode sor imtrodusida de mode fenomenclégi
eo ou=a teorin guantizeds noo conopicanente)leverin & resultados que diferen doa
exparizentesis por wne guantidade da ordoa de grandeszs do oocosa do nucleon.

Ests diferenga dntre 3.5. ¢ o 1.T.L, & muitos tozpos nfc sert no caso relativise
tico do exstooente uan ofesa de nucleon cowo o2 QOSSO ::Hﬁln, ji gue a propria
energic de ligagio dojenderi em geral da assse des particulos constituintes

B = E{:lnzl. I



Exiate contudo a possibilidade de que, pela inclusac de térmos mais elevados
de ligagao na equagio de Bothe-Salpeter, (ox-fig.10) um acarde pOBEE BEr @8-
tabelecido entre esta equagac ¢ ¢ metedo a muitos tempos ¢ consequentemente
o8 valores experimentais, na tecria de Heisenber;.

Os resultados do presonte capitulo podem ser assim resumidost O W.T.D. &
ta terpo dern sompre maus resultados quande comparade com os formaliamos o
muitos tempos, seja o M.T.D. a muitos tempos ou 3.5., em virtude de sus falha
em levar em conta ¢ 'dressing' das particulas constituintes do estads lipade.
Embora tivessemos ilustrado este fato em nossoc modéle somente na ordem mais
baixa, este ponto fraco do métode & um tempo sera mentido numa teoria unifiea
da realista em gualquer ordem de aproximsgic. (vide cap.V). Quante a escolha
entre o eaquema de B.5. e o H.T.D, o multos tempos estu dependera fortemente
da magnitude relativa cntre m energia de ligagac ¢ as massas das particulas
constituintes nas solugoes oxatas,

Finalmente cbservamos que a diferenga entre os 3 métodos @ particularmente
erucial para as teorims unificadss, Numa tecria em gque a interacao simplesmen
te da lugar & uma pequena corregéc para a masss ‘bare’ (nfo nula), todos es=
tes métodes darao essencialmente o mosmo resultadec,
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¥ - Ud SISTEKA INFINITC FARA O FROBLEMA DI UMA FARTICULA

Neate eapituloe eatudaremcs um modelo de un sistems infinite de equagoes do
tipo Temm-Dancoff & um tempo, correspondendo sc problema de uma particula numa
tecoria unifiecnda ronlista.

No capitule antericor o problemn de uma porticuln era facilmente soluvel, ji
que em virtude das regres de selegeo (2m 3b) somente deds vetores 'bare' compa

reciam na expansae do estado fisico (eq,IV.5). Umsn tal hipersimplificagac do
problema real tende a esconder algumas dificuldades presentes na oplicagao do
método n um tempe ac probleoms do uma partlicula , dificuldades estas que sdc da
meama naturezs que os que se menifestam no aparecimento de energias negotivas
no problema do estado lipace estudade no capitule IV.

Vamos supor que ocstejamcs estudando uma teoria unificadn, onde particulas
do massa nula (noutrinca) tornam-se massivas em virtude da self-interagio.
Para o caleulo do massa fisica wm sistems do sejuinte tipo sera obtide

E= Knﬂll'

sEmsEw

(V.1)
'[E-Eul_ﬂ”ﬂn:' = EI"In-J'.} + L'.uf{m,'l:l
onde £ ¢ a enerpgia, isto ¢ a massa se o calculc & feito para uma particula em
repousc, Z_(n) ¢ n enerpie cinétien de n+l particulas 'hare’, ey sno Kor-
neis inteprnis ¢ (V.l) exemplifics uma tecrism om gue a interacio da lupgar 4
transigoes entre fin) e f{n-1), fin:1}, onde fin} @ a rmplitude de n+l parti-
culas com momentum total zerc. C kermol }:‘; ¢ em geral tal que I:I',f{n—ll podie
ser explicitamente integrada lovende & fip=1) eomo funcio de n-1 combinancoos
de n wariaveis. A estrutura de (V.1l) corresponde mo velho método & um tempo on
de¢ por simplicidnde os termos de vacuo foram excluidos.

Fagendo a aproximacso n+l obtemcs de (V.1)
K fin = 1)

o) » T (v.2)

Come partimos de uma massa "bare nula segue-se gue E.nl_'n} anula-s¢ guando
todoa os momenta sdo zero, tende n infinito quonde pelo menos um momentus wai
a infinito, ¢ portanto pars qualguer valor de E%0, f{n) dada por (V.2) tera
um polo para certcs valores dos momenta. lste sipnifica gque o estade de uma
pﬂrt-[l‘.ulﬂ figica possui uma onda ‘outgoing' com m+l part.{nu].n.‘ sendo portan=
to nesta aproximagic uma particula instavel., Concluimcs assim que ndo & possi
vel em nenhumn aproximagho ﬂ:hﬂ.l;:’l- valor real ¢ malor do que zerc para &,

Fisicamente isto & bastante”ja que eolocando fin+l) = 0, cstamos negligen-
eiando precisamente o térmo responsavel -e¢lo aparecimento da massn mas n+l
particulas representadas por fin).



Fozendo uma tal nproximegio estes n+l particulas permanccem 'meutrincs’ nos
quais o eatado do wmn pnrt:l.:u.ln massiva pode decair.

A mesma dificuldade ceorrera no nove #.T.D. & um tempo, com o complicagho
‘acicional do aparecimento de polos correspondends a particulas de energia ng
gativa nos estados intermedisrioe evj: eliminagac feol estudada per Dyson.
[vide cap.III).

Bosso propositec ¢ o de estudar o que acontece no limite n =reo, ¢ o de propor
uma modificagie do esguema convencional de aproximagces, de mode a obter auto-
valores reais ja em ordens finitas de aproeximagac.

Obsorvamos que numa teoria com uma metrica positive definida tombeém nao pode
remos obter auto-valores comploxos esproximades, a nio ser uma folha afiaiea do
planc eortade da energia, Nuss teoria guantizads de acordc com uma métrica in-
definids contudo,; autc-valcores complexos pndariﬂ ger encontrades na folha Ii.i
X -i.'.'l.R] .

0 sistema (V.1l) admito & ssguinte aclugao formal

!:-E{l:-.z 1 ua (v.3)
2 -2 (205, 1 KL

E -Bni:s}-:-r- 1 K
n-z (4)

A estrutura bosicamente simples de (V,3), wma especie de fragao continua
de operadores, BUSere que pora uma oescolha ap spriada de ]".i i Ki. PoS&aamcE
resolver exatamente o problema, Esta cacolhas serd ditada em primeiro lugar por
sus conveniencia matemdtica, a interpreta¢io fisies sendc produnlmente desen-
volvida mpo decursc da oxposigac. Desde o ecmege devemos assepgurnr que a difi
culdade assinalada em (V.2) persista em nossc modelo. Uma wez garantido cate
ponto, cromos que mesme wma escolha particularmente simples para o8 Kernois,
nao prejudicars uma discussic pelo mencs gqualitativa do comportasento de sis=-
temas do tipe (V.,1) . Como também & tridizensicnelidade do espage dos moments
nio parece ter um papel fundamental para uma snalise estrutural de (V.1) for
mularescs ¢ nosso modélo em térmos de um sistemn unidimensional de cqual s,

5

o
E=cl J £ (ke

ey
i *kﬂ.
(B=k) )1, () )= cds lr leklltz}“_ diz,
(ki) € “‘:“a"p“;“&’ .1[ £ (i R je)e "3 diy (Vod)
‘I] i h'IH.._'[

e (. A
(B g€ 06yt = A0 Gk, ) +.1n[ SR =
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onde oe kg sic variaveis uaidimensionnis o positivas, © sistemsa (V.4) se enqua=
dra na esturturs geral de.(V.1) , e podenmcs facilmente escraver o equagis de .u.!
to-wvalores correspondente, 4 constante - representn & constante de scoplasento .
do nossc modéle podende smer real ou imaginéris pura. O priseirs caso correspons
de & uma nétrica poaitiva defindda, levando & autaqvalores exatos nngatim"'.l
consequentemente nidc dando lugar 4 dificuldade com poloa (V.2) , muito pelo ccn
traric: u=a porticula instavel na sclugfio exata pode sparecer como estavel em
ume certa aproximagio. O casc de J imaginario corresponde & auto-valores exatos
positivos sendo portanto o coso que mos interesssa mois de perto, implisands o
uso de usa métrica indefinida,

A equagho de auto-valores & dada por

UL, (Vg5)

¢ B ky-kykg-Aessinns
i.tﬂ i R R
B = A2%p(z) ‘ (V,8)

snde FI(L') satisfaz & equagic integral (L' sendc uma wvariavel livra)

F(E') = f s d)
o (2 a,)-2 F(E k) (¥,7)

gue tombém pode ser cscrita como
5 i |

-1
F(B') = @ ot dt _ (V.8)

t =A7F(t)
Loge uma soluglo de (V.8) sern dada comou uma sclugfio da equagdo diferencial

P+ FPe 1 - {?':ﬁ-ﬂ (v.0)
E' - F

gom a condigio iniginl

F{Z! )0 ' (v.10)
Bty — it
Deixaremcs pars o apendice D uoa discussio completa da equagdc diferencial
(Vv.8) @ n demonstracho de gue umn sclugho satisfomends 4 (V.10) existe. Fara o
momento limitar-nos-esocs 4 discutir ms caractoristicos da solugho que podem ser
diretemente cbtidas de (V.8). Vemos imedistamente que 2 solughe satisfazendo
(V.10) ccaporta-se cozo ISE' para B'— —wo ,
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Disto segue-se que o fungaoc F(E') sern nesativa (¢ cca efeito monotona decres-
cente-vide apendice D) pars E'< tﬂ onde t“ @ wsa sclugao real de tp-lﬂtu}, sen
do alem disso analitica oa wizinhanga do eixo real {tn. O poanto El'tu ¢ un pen
to sinpuler de F(E') sende uwa "branch peint' come pode ser viste de

f'lﬂllnu}'du = DisclFlz)e®)s f; e'd = i 0 a3
s -Xrie)
onde o cont. rno de inte_ragio & tomade om tormo do ponto t - Este 'branch
point' @ o inicic de um corte no plane complexe de B°, por meio do qual o
fungac F(E') pode ser univocamente definide no planc complexc.
Mostramos agora que mf}ﬂ um ponto renl tal que

t, - Lrit ) =0 (v.12)

existe com efeitc. S¢ nio fosse ¢ case teriamcs F(Z') negativa e regular ao
longo do todo o eixu real & a integral (V.B) existiria pora qualquer ZY, real,
definido F sobre o eixe real, Tomands agora o limite assintotieo de F(E') quag
do E'=—+ e , encontrariamcs +(E)- 1L/E em contradigas ecom FIE') 2 0.

Esta contradigao mostra que use sclugno : tal da cquagac (V.12) existe para
‘lﬂ >0 e portanto ¥ tem um corte d.n t, <, E'¢ oo+ For outro lade como mostramos
om detalhe no apesdiees 0, paras 22 {_ﬂ' wm "heench ;p-n:l.:l.t' real ndc existe, o que
implica a partir de (V.8)

F(E')- B' _ 1, Al o
E g ¢ 2% (v.13)

Begua-se que para 14 0 F(Z') & regular em todo eixe resl, possuindo contu
do em pgeral deis ‘branch point' complexcs conjupados e cortes correspondentes
no plano complexe. (vide apéndice 2)

Da discussac acima concluimos que n equagio de autovalores (V,6) admitira
solugces (ver tombénm apendice 2)

B so, ey 1— B0

A8 70, c® ¢ 1 = nio hi solucies na folha flsiea
A3 0, 2l g —s B S0 (V.14)

Xt € 0y o > 1 —3%E complexc cu nio hi solugdes

Tanto o casc em yue nac ha solugdes como o de autc-valores complowns mirnd
ficam que o particula @ instavel. Antes de pressepuirmos com um estuds eospa-
rando as solugoes exatas (V,14) com as dadas pelo método Tasm-Dancoff, procu-
remcs ums interpretacac fisica para as sclugdes (V.14). fara este priposito
necessitaremos das expressces exatas parn as f, dades por

—

8
Ty aglen " (Enk, - TP °p - Bx, 2t 2
ey = ey 1) (ke ol = P (ke =k, ) D aeees (E= Tk, 37007ty 1)

(v 13}
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cooo pode foer faciluente verificad: substituindo-pe (V.15) e (V.4) ecco E, F(Z¢)
dadas por (V.8,6) respectivencente.

Olmervencs que nos casce de solugies recis o s A 1, 28 fungias r nac tem po-
lcs no dopinic de variagos dos k;+ Zate fato caracteriza o cotado representado
pelo conjunto das f_ cooo sendo usa particule estével. Fors of = 1z 'lizﬂ.‘- a8 £
desenvolven un polo na fronteira do dooinic de veriagas dos k;, isto @ parn
ky = 0. Isto significa que a particula eetd no limier de cstabilidade. (por exem
ploe o electron na Q.E.0.)

& elarc que o equagdo (V.15) estds intimacente relacionads com os resultados
cbtidos oa orden oais baixa da tecria de perturbagoes, cou o diferenga de que
cs dencuinadores E -7k » propadoreg 'bare’ de n+] particulss, estic
substituides pelos den ‘dressed' I - ‘i:ki - 1"1"[]! -; l:_i]l « Este Iato

permite o interpretagic de F cooo uma self-gnergia, levand: o une discussfc
qualitativa de (V.14). Para isto.ccnsideremca :=1= F ccmo se fosse uma self-engr

gla conatante
2 pz) =t (V.18)

vi
code ume teoria eom 1> 0 (nétrien definida) tomamos o L0 , & eca 22 £0,m =0,
Reconds agora o fungho ’1 que representa duss particulas virtunis no estado

de una particula fisica

f, (k) - r._:lu — = _E:fll.'lk (V,17)
-2 = T

Mln}ﬂ, teriamos um polo oo I'l FI:I-F:I um eerto valor de b:l L1 t::-f. 1, indi-
cando ume particuln instavel, @ nenhum pole parc =2 »1, logo uaa particula ut.i
vel. O coso de ¢© = 1 corresponde ao linear de estabilidade, i.e. a uma particu
la que do pontc de vista energético tanto pode ser estivel como instdvel. is so
lugces exatns mostrom que pu.rn-'i" 0 ola ninda mparece como estiavel, poare lz-ﬂ- a
ja & instavel. .
. Vemos tnmbéo que quando ,12-‘:-{! e I:a‘.'-l (¥.17) possui um
polo, quando cz.; 1 nac ba polo, isto &, um comportasents exatamente centrario
80 Que mcontoce :nﬂla} 0, de ocorde com (V.14).

h equagho (V.17) mostra além dissc que o eapelhacento de duss particulns de-
we principicr a partir de E' = r:l.p"i:E gue ¢ A oenor energia para a qual f.l possul
polos. Tomando f, que & parte de um fator descrove & confipurngao de 3 particu-
1es virtusis no estade de duas particulas fisicas eu espnllsmento, sendo E' sgo
ra a snergis total das duca plrt:l.:u].nl.

a
e A
(2 -k, - a-i:.r'caliiip’-kl-n.ﬂ"cﬁl (V.18)

£k key) o

notomcs que o 'treshold' para o espalhacents de duns particules E' = a/e? coin=
cide com o 'treshold' para & prfducio de 3 porticulas, i.e, o dencminador
:l-kl-ka.afuﬂ pnula-ae para Z' n::-,.nl'l::= B I:l -k, =0, (0 dencuinador 1'—111-:|.|I"1:2
e (V.18) corresponde o uma corregno ao processo elastico i.o. lova em conta o
'dressing' dos particulas espalhadas).
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Istu significc que pelo conce wan das partleulne espalhadng estd nu linder dn es
tabilidede. Como 'no coso de wma particula diseutids seica, p _r:L:l {ﬂ- ugn por-
ticuls & estéavel, donde ¢ corte raal de F(Z') es pABES gue para J 20 gl & ins-
tével i.e. possul energia ecaplaxa o gquoe se reflete o corte complexo de F(B!),

i ergmentogic ocimz lewn £ una simples cc 'pwnm;..... gualitative dos results -
dos exetos, o permite o estabelecizents da equadvalencis entre ¢ nosao modélo o
o efleule do propagedcr <e una particuls

l 1
(I']) = == = (V.19)
2 i R B - oo Tz
por mels des diu.grm da fig.12, cu equivalentemonte uscnde para F(Z') 2 equa-
¢fo integral de ﬂr.l-:n“'“}
5 flf'- *-Hl'-l
WiEt) = R a2 -
2(2m1i F, Bt - lé[ FIB' e ﬁl] ke - @-— (v.20)

Integronde (V.20) adhre !I:.“:| num sontorno apropriads de plans complexo obtomos
o equagio integral (V.7) ecmaletands assinm a Prove dn .quj,#n].;nuc do noEso o=
délc eow ums tecrin deserita peloa grafices da fip.1%.

L]

lHatcdos de o o

.k oquagio de muto-valcres sbhtida na n+l @sice sproxinagfic Tasa-Dangoff onde
nogligencinmos rml BOrD
- -
] 2 kl dic
E = 1?. =2 i 1
& = - 2 =
o -ul.l'.l | I 1"3 &3
L
2
o -hl-hal -
..i 1::! = "-k {?'u}
e f i | Y
,' & 1'.'._.“

H T =Ty =a @ w—il

1 n

Fara E>0 a tltiua integral deseavolve - polc mencioncde oo equagac (V.2) o
que aipgnifica que nfic podence ter umn roiz positive do equeqdo aproxicada(v.21)

roderinmoa penear o= elindnor & cificuldsde coo ¢ polo defininds as noascs
integreis no sentids da parte principnl, =fa isto nio pode aer & priori justifri
eado j& gue corresponderia fisieasente & wme suporscsig@c de ondns "ingoing' @
‘sutgaing' o nfc weis ao cdleule ds vnergie de usn particulc setéwel. wuands
iﬁ{n podemos faciloente verificor por indugfo gque = integral & direita de (V,21)
@ negative para 2<0 4 logo swltiplicada por 1% a8 wm guantidade positiva done-
dg eomeluizsa que tachim nioc oxisten raises negotivas 2o (V.21) pera 1%z 6.

CuandoX> 0 per cutre lado, sotd elaro gque zodereccs abter suto-valores apros
zirndos nepotivos nesno ne enss de nio haver sclugSes exstrs roais.



av

Oboervesoc ingidentoloente que = teoria de periurbogtes tacbén falhn coople=
tamente dande j4 o= ordem maioc baixs o regultnds cbourds

I oy .
ay ‘Jf S T (v.22)
K,

indicande wa comportasento nfo regular de EI‘!J.P'], tachos previsivel das solugoen
exatas (V.14)

Indicapems agorn algunas oanciras de obter anto-valores sproxizados quando
o oy 1:2:; 1, isto é quando putovalorea exatos positivos existen. Zo priceiro
lugar poderismos ealeulnr a rais complexa da asquasda de avtovalores aproxinads

{v.21) considerande a sux parte real ecce dnnds o sute-valer sproximade. i eocp
sisténcin exige gue para isto n porte inapginfrin dn roiz oejn muite menor que
sua parte real, caso no qual & parte izaginaris dard = grosso modo una Jaedida
do érro cocetido j& que I_ E'[‘_’f oo B 3“_’,1 ex2tS | jlestas circunstin-

Fleon. = 02
cica podesca obter direstzoente o pearte recl considerando as integrais mo senti-

do da parte prinecipal, como execplificado zhboixo cou o aproximsgio n = 2.
Supondo que a equocso de cuto-volores )
e =k
2 e 2122 f & diey

Y B ke (v.23)

adeite uma solugho cocplexa e= A+df , com |E] L4 2 obtemos de (V.23)

oo o
Z= Xe* 4o i :
5!' e (i) - 22 ;] e ! o
(R-ey )7L ol R =

L: pd 1121;-.5' K2

o noaso modelo vemss que parn Ifl muito peguenc toucs .'izfcalngl:lgi.uﬁ: -
=222 7o % 48 mode que o substituigio dm- integrais er partes principais pode
ser justificods & posteriori quando !.1 <.

Fropocos pgoro wm outro setodo eom uma repifs de nplicobilidade ruito cader,
nio cicente e nosso modalc =os, assi: o esserauos oo virtude do segnificads £f
sico deste méteds, e= teorins ouite neis gerais,

Tesondo a egquagio de suto-valores exata (V.5) que ro-cscrevemcs couo

ﬂ._.'l
B .fnh |I o <] diry
E - Itl-l-ﬁﬂ

fagamos como e (v.16) 2 luhltituiq.nb a-f?{:l:.-;l} dentro 2z integral por wma
coastante ‘_l'..r"ﬂ . Deste mods o seguinte equagio & cbtida
ok
2 2 Lo

Zelde
ol i (V.27)
21 -=,) -k
I':

{I-Hl



i equegio (V.57) possui a interessante carscteristica de admitir solugoes po
aitives —ara at<o ; :a#_ 1, negativas punlﬂ;r L+ 1:3} 1,eenio poaguir solucdes
reals nes outros casos, iatao & {exeata pETa -nE-l]I o Dessd conportooents das so-
lugtes exetas (V.14). HatemAticasmente a substituicfo 4n ege V.26 por V.27 pode
sar justificada:

1. = FERrE ]12|1:.l:1_11'|:tu caso do eatudo feito da eguacte diferencial (V.8) oo
ependice D ¢ das figuras 13 Xceoncluimos que

1Pl ) 5 FIE) £ /13 1.=' Il-eEI
131 € 120 ®7 ¥ 1-e2|

Fartzats o térmo _':l.ﬂﬂ'n‘.‘-ukll em (V.268) dd unn contribuicfo negligivel da ordem
< |11  exceto nos pentos onde o térmo E-k, & cuito pecueno i.e. l"‘u-kllizln,l--
Bentro deste pequenc intervale’ podesncs gubstitulr ?{_!‘.-:-:l} par FP(Z) ;:'..',lﬁ: .
obtendo deste modo & equacdo (V,27). No apendice 3 eote poote serd exaninade
eoz maior detalhe por meic de us cileulo conereto.

2 = Fera 12 <g=] « Heoste camo ohservemos que ¢ fator exponencial na inte -
gral (V.26) corta efetivazente o8 mouenta cuito elevados do aodo que podecos
gen presde erroe substituir (V.26) por

(v.28)

.rE =l
2= :'-2 =E| © 1 dItl
a ..!g? (V.2a)
(Z-k, -5 (2-3,)

Evrls B lade deo lise feitn dice D o da Fig.13 obtemos
onde X>>1l. For outre aalmlea nnn::qm D a B
7)< (14 ¥ - o 1725 | 221217 o gue mostra que a fun -
R0 J'I...-h:l]l conporto-se praticamente como ums constante zers 22 <1 .

justifieando a substituicio de F(2-k,) por F(Z) guando Pee 1.
Zetendo intoiramente justificodo nﬂinu cogos extremos, podectcs OBPETSr QUE
o setodo neimn doré resultades pele zenosa gualitativoments aceitaveds pars qual

quar 1% , & sua eficiencic smumentands quande o substituigfo ?[3-'&1 |J—2F(Z) &
faitc muma sproximacio nais elevadz, iste & be ez lugar ds (V.27) escrevernos

o =K

» ﬂaaln 1ok,
L] [«
8 z_a..j_i ‘“hz
[l -I!Il:a
] (V.30)
Ell-1 j
s T

'.l“'b por diante, ja que co="un aumento do niuero de integrais & expressio
total ‘oras-ge coda vez nencs sensivel 3 qualquer aproxisngfio feits na Ultion
intepgrels

Fiaicauente o nossc método significe que -am aproxiscglo asl nao negligon-
eicmos completamente f_ . =oa lovasos ear conta que ests fungSo contribuird po=
re tornar cassivas as particulss descritas por f_.



Huce tecriz relativistisn ncssn codifieagio do 1.T.0. equivale 4 cacrover om ves
de e

P *'n “n+l

a - - __E Il!ll [?l“]
eoma o (V.2) a relegdc nedificada

xXir ; "
£ » oD D] B (v.33)
n -

. Euti-i-a.-:'

code I, & energia em repousc de pﬂrt.inulu i.0. sun smsen, ¢ agora calculads de
modc self-consiatente. Una tal modificagdo aproxiza o zétodo 3 um teapo dos nd
tcdos & cultcs tempos (2.5, ¢ T.0, & uitos tespos) que -csgues wa cardter o -
solf-conoistente, coue pode ser visto no nossc models de eguagdc ) (2 cuites
tecpos) (V.20), quondo W(Z') & substituids sor 3/e” destr: da integral lovande
zor = lado & aproximneio mais baixa do I5.7T.0. & ouitos tecpon, & SOr outro
efetucnde-se a integragdc schre k. 8 nosan equacho codificada (V.27).

Eate modifieagSc estd toobén intiuwacsente reloeisneds cco o adtose wsade an
teoriz dea perturbagces de separar o mosss 'bare' no cnsoo flpiecn nois w con-
tra-termo ¢ considerar este contro-ter=c ¢omo 8o {3600 uDs corregac mais elewa
ge. U tzl procedinento & necesudrio, como viics no cozituls II, pora obter uo
foraalismo de renormnlizecio consistents nuoz teorin diverpaonto, no pasas que
nosta eu.;:l.t.ula fiucs & ele condusidoe pela necessidade Zo olisisar ca auto-va-
lorss complexos.

Uea linhn de atagque secelbonte a apresentodn neate ::pitu.lcl pedaria ter silde
ussds sere elioinar as dificuldodes prosentes oo probless do estado ligado no
HaTaDe & m tempo. LA contuds wa eapeciol cuidndo deve sor touzde para evitar
a inclusfo des =cssas dos particulas constituintes ses co =eoco teapo ineluir
efeitos pnis slevadss de lipagfo. (vide discussfo no eapituls IV)



COHCLUBLG

Mo presente trobalbo anclissmos o8 seguintes gquestces:
1- A superioridede que o li.T.D. & cultes tospos oferece na oun np],l,:“i-n & too=
rias divergentes guanto & introdugio de um formelisme do renormalisaglo.
2- [ aparccizents de divergencins de volume ne 'velhe! oétode Tnem-Dancoff, seu
significedo fisico, sua elizminncdo seja por meis de 'nove' pétada, sejn através
de ume modificagio apropriada do 'welho' netodo, sus conexdo com o teoreca de
Hang. O comportomente dos ‘velhas' e 'novas' asplitudes guando o numerc de ope-
radores tende pora infinito & sua possivel fuplicagio sobre o convergencinm oo
nio dos métodos de aproxinmagio.
3= L dificuldades encontrades ne splicogoe do F.T.5. o uz tecno 4 teorins oni-
ficadas, menifestando-se no sparecizente de auto-walores aproxinades cocplexes
ou negatives, e sua elicinagdo por oeio de métodos mutc consimtentes cooo por
exvaplo o 1M.T.D. & cuitos tempos. .

és codelos saluveis que constitubress o parte central ¢o nosso trabalho foraam
utilipndos somente para clarificer o significado fisice dos diversas sproxios -
f#oes Tmm-Dancoff, ouitas vezes escondide atras dos calculos cooplicadeos de uma
teorin realistn, ¢ procuramos basear os generalizsgces nestes argumentos (laicos

0 estudo feito possibilita & conelusio de gque entre os notodos Tasm-Dancoff
o 8 ouitos teopos possui vantagens nitidas scbre os demnis, tnAto na sus aplics
¢80 & teorias remoroalizaveis divergentes, onde & suz covarimnciz explicita pos
sibilita a introdugio de ume téenien nais satiafatdric de rencrnelizagio, (ep.II)
como & teoris whificadas finitos onde o seu cardter auto-coasistente leva &
suto-valores oais corretos (ep.IV o V). Sendo necessarinmonts ws nove método
{nos cepltulos IV ¢ V o ausencin de flutungoes de vacuo torncu irrelevonte a dis
tingia entre "neve' ¢ 'volho'! métods) esth autematisazents livrs de divergéncisa
de voluie, mas provavelmente nfo converpiri para es resultados exatos em virtude
dn propriedade nao decrescente dos "novaa' soplitudes (en.III) que & um reflexo
do ecardtor insstisfotorio da defimigio do produte normel pels regra de Tick.
(ep. @ 11). A nature=a nio convergenta do formalismo 4 suitos teopos sduente po
deriz conetrulir desvantagessquanto oo sen uso num progrese - atunloente irreali=
zavel - de cbtengfo das solugces exatas de uma teoria reslists, nio desnerecen
do a prieri & swn aplicabilidade pratics.

Ho easo do uma teorim finita sejo atraves de um eut-off (come no dp.V), de
b processo liodte (cowo no ep.iV) oo Je uwon regularizagso o la Fouli=Villars ou
Heisenberg, podemos aplicar o 'velho' E.T.D. apde ¢ elizinsgio dos divergencins
de volume apresentada no capitulo IIT ¢ una modificacie suto-corgtsnte dads no
capitule V. Bste nétode serd possiveluents o unico & convergir pare os resulta-
dos exotos, se estes existiren, Las o seu carater nie explieitesente covariante
1he @A lindtado weler pritice ewm teorizs relativistiessente invariontes. He gue
se refers 2 probleszas de auto-valores podecos ainda espersr resultados razoaveis
tooande o patticuls oo repousc ¢ indentificonds o enpgin oo repcuse com o BOSBS.
mng parc problemss de colisces o alte energin onde ne corrogten



relativistiess sde de suma faportincin, serissce fergados 4 ir parn aproxi
magoos muito elevodas afim de re-cbter uma estruturs eoverinnte para as reaults
dos.

Quanto no "move' metods & wa tenpo situf-so nusa posigfio intermedicris entre
o8 dois cutros possuindo os desvantogens de ambos ¢ pouens doo vontagona de ea-
do. Istc & nao sendo completomente covarionte sus renormalizogfo & complicada &
bastante insatisfatoris. Sendo w cétedo o us tempo levn & dificuldodes no chl-
culo de nuto-valores om teorice unificadas. Sondo un 'mova' mdtods o provavel
néo decresciments dos suas amplitudes parn n=»oe deverd influencinr fortemente a
sus convergencin pars os resultadcs exotos, ¢ fimelmesto o nfc ortogonalidode
destns noplitudos impede une conexdc precisa com ns guantidades observaveis.
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0 sutor deseojs monifestnr os seus agrodecicentcos aca froefe. W Helscenberg,
iia Schooberg o if. Taketani, bem como ooe Drs. 7. Guttinger, J. Osada o K. Sekine
por uwa grande nuoero de discussies ¢ sugestoes foitas no decorrer deste trobalhe.
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AP TDICS

Diseutiremcs nesto spendice um polto gque tem recentemente recebido uma conside
rovel atemgSo Y(31132)
con interaghic direta apresentade no eapitule IV ¢ uuz teoris cco acoplamento ine
direte lt':.-:.q Yukawa), onde as particulas 'a' intersg~ travée de particulss iner
sedisrine gue chamardscs 'e'. Estas particulns 'of 'ﬂul-t:u:ﬂl'lt::l:- que o pﬂtticul-ﬂt
‘a' sd30 o analogo dos nucleons. : .

Sejn o interaglo ontre aa particulos 'a' o 'o' deserita por uma hamiltoniana

a ssher, excmincraoos o equivolencia entre o nosso modalo

i -)(m: Lt% s m ot (k)alx) +t-.§ . ) c*[k]clk]} 5, e anty .

(£.1)

: {.u".’::l]n"!hgicikslsihlvhidluh c.c. |

ende ¢’ o ¢ s2c operadorea de crimgic @ cniquilagic de zartieulas 'c', que sao
supostas possuidoras de wes sesas (energin em repouss) 'bare’ B, @ uns @aassa
cinetida u ; B, & n constante de seaplaments nde rencrmalizads o coms ne eapltn
le IV sssumirenos implicitacente un cut-off % no térme de interagic de (i.1).
Tomando & zerticula fisicn 'c' o onsatz

[o,ke0 5 = lena ¢ (0110 > o /d k hlK)a® ()a* (k) 10 > {42)

cor H'|O » = 0

cbtoucs do problesa de suto-velores as equagoes

i

2-po =B g f ¥ alxietnix) (i.3)
- o

hik) (Ek-2a) =g,

P
dende segue-sc a equagia de cuto-volores

i EE 5
| adelx® (2t
; &
Seguindo Jouvet, itaka e outros tomemos agors o liadte

=1 -
B = Pﬂ = B Nﬂi Eun:l {ﬁ!i]

2 2 .
Spomes SALE By _oo-di o h o2 O sifimiie (£a5)
B g o P

de modo que de (..4) cbtemos
i 2 .., .2 -1
dlx® (3 - kT = - (4-6)
n-f o 31-1“'! R A
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e execotomos o limite (IV.300.

hntes de entrormos numa discussas ded inplieagosa do resultade acirn exaning
mos rapidomente n extensds do problesa de auto-velorss -ara o estade ligade o
discutide no ecapitule 1V, fora do distica centro Ce magan,

No sistemn centro de massa a equagmc (1V.20) & (4.3) pode ser eascrita como

o T(z) =1 (&.7)
onde
N(z) = = 1? fﬂdP' *; L lfﬂ'-'-'if.{-pl-'-s,‘,l (a.2)

-
¢ a contribuigio de ura 'bubble' de duas varticuless ‘a', coincidinde & parte
de fatores nusericos com a self-enerpia do procagedicr ds pnrt{-r:u.l: F1

Coua 4 dnde por (IV.3C) o equagho (..%) escreve-ge no limite 1'.1—-:".'11‘?: ]

F- F*=z) = o (h.S)
onde :

e e s T8 LS e ). (ia2C)

hl-*w-,
= {.:n!a:nl J"., dax _F{Il,.l"l-‘.‘--l'-]

L]
W2 px i y=L
f{:} . % o] (X2 .ul (4.11)
Uma analise, detalhadn da dependéncis de nossss for-ulas com o cut-off fora
do sistemn centro de masen, a ser Leita no n.pin.iun -y nostra que no caso ge=-
ral & oquagas J{A.D) tenn & far=a

{8 -otixl ) = FEig-x"/an) (4.13)

onde I: ¢ 0 momentum total do estqdo ligade e » tme constante que depende do ti
70 de cut-off usado. 0 arcumento = 4 m em (h.13) & Gewide s tranafor
g0 de Galileu, o térmo.d |k| tem sun orijem me fato e g.¢ um cut=off arbitré-
rio pode introduzir fergoe depondentes dn veleeilsdes cue fagem éon que a ener=
gia de lipocoo dependes dz walseidade abassluta Jo centre de =nsss. Usondo wmn
¢leosgse conveniente de cut-offs ( por exem lo de tive pnussicne }, o fazendo o
limite &, = catos for¢ns dopendontes da veleeid=de -cdem ser cvitadsa lovnn
do 3 ol = 0. llo que seguo restringir:os-eses 4 cut-offs co tipo neiza, de —ede
que o formulag fora do sistess centre de mzeen ofo o:-tidos doe gue se referen
ao sistenn centro de masso wediante o oubetitulgio o == .i-!'."-..-"-'i 5 . aBsim a
eguacas de actovalores mara = o estclo lipodoe com scoantum k &

et i “Em (
ﬁ_ J_E B L --&13]



A coincidencia, no iimite G, iy B Road, da sguogfic de autc-valoreo
(i.8) para a nerticuln fisiec 'eo' cam o equmgEe [27.22) uors o estade lipndo
de duns particulas 'a", rostra que peld enos nic cotores considerndos (e pro-
vavelnente an todos o5 osetoren), n teorin do tiic Farmdl 0 oguivnlente & = ea-
80 linite de umn teoris de necplomento internedinric code a maeas 'bare' @ n
congtonte de aecoplaente do ceson iatormedinric Een-..:- r pars infindto. Tal con

jigio impostn sobre o teorin Jde Yukowa inp&.icu o & cooptonte de irel] noronlizse

- . a 1 — |
¢ho & da portieuin 'e¢' tondor & zaro. L @ dada =op

=1 . e gles =1 1.}'( aiz | ”-:]l ‘B f-.’ﬂ:lff'.!il" (a,14)
St
onde (k) o dado por (IV.33). Jo (+.14) vemca gus roalmonte I =0 guondo

L',E = 0w i.0. o probabilidade de enguntrar mn portfculs ‘barc' %' ne eatado de

&

wmn particula figien ‘e' & sore ¢ o cstede mormoiisoic ce ump sarticula fisien
a@ no limite (..5)

1/ ot =1/ ’ = 4
A L t..r die] £23 17) ); erleda® (et (=R} 0 >
P .
Comparende com (IV.33) woermos quo ﬂ.: = ﬂ:-,.n cnde I ] H-Lﬂn lipado

normalizade ne teoric de Ferni, Toioos nsain quo r_'\-l}'t'ﬂ limite o cmpn 'e! nio @
inderendente do eanpe "o" no sentlde de que podonce ecerever .I-"' = — 1-"' "F'
dosde que osta relagfo sojn usndn entre nutoe=ooinico de energin t.l.nlEn :Iu. h.u-
miltonicsa (a.l) , Zota igucidade leva inedicotacente da homiltemiana (A 1) 3
he=iltonicoa (iV.4a),

Quands procuramcs resolver um prodlonn do espeliscwntc mumn teorin tize
Ferni (por cxenple ndfteorin de Deisenboryl, ¢ ccparas=lo eon o8 resultados de
e teorin conwgneionnl de tipo Yuiawn, @ convenlente termes une oxprossio po-
ro ¢ tropagodor do partiecla eemposte, & equiveléiels agontada neizn forneco
uwn neio simples pare o cbtenghic deste propagedir no posso zodelo :. o sigte-
mn centro de massn o propegodor nfe ronoronlizeis fa pjarticula 'e! com Gy OB,
rindn finitos ¢ dado por

B KRt Rtz (4.16)
En todos om qm.‘ﬂd..lﬂnu nz.um'run, como por axasslc nmplitlldﬁl de ecallp
minte sdoonte o produts E‘. &h BOCpe PECE ¢ Lud DoB lewn g intrcdugie de
un propagador rn.nnr._,u..t:l.umlu- [Jitnrj.nt:u ror um fotor _-:E gz Jdefinigho usual)
a o 2 i ! . i
ﬂ‘,:'u ™ E I.-_',_II:Il LA {\1‘:} . E Gg if= = j_‘; - G, A EAN] (kal7)
oo
1 - = o A
ﬁ; - ﬁ.? = u Bk g | S ]
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¢ aonds & sspatante o acoplemonte renepmnlisndr, Freonco one foroulds gelss o

iimdte (£,5) corves-ondente & . = ©°, ¢ -rofierecte & scatragio Jo todns oo
linhns de nescna =os dlasracne Feynan do tecris Je mecylosento iatersedizrio
a w ponto, (vide £i;.11)ebtencs .

L] ! 1 rn -

(- : = 4 R 1

&, — 4, 3, 2 {&.18)

que ngore no limdte L, = 2 11 —s O ooz (I7.30) lown &

i

AL A2ye= )Y LB R e (x.20)

o propagader do eatsde lipgode nasiz definide & pooencislovnte o inverse da
squngdo do nutt-walares {..C) o que poraite chieelc dirotspente na teorin de
tipo E‘:u-ml sosin gud a equagto O¢ cuto-wnlores for ancontrade,

Apliesnis o tecroms Ze Couchy o (4,5C) me planc ccmplexe de B eortndo de
ﬁhﬂ 2 Rorinits chtesce eom {o.13) n resrocentac¥e expsctenl de L-u-iranﬂ--l"-‘illﬂr.m”

Quo para um ptum total I doto @ com & substituighs
” i

iy — o= a= & daén por
d * . . " e "aml
¥ I-;l::-" = -‘L-*E 4'1_;:_ "4 ’." 4 o« @ ix) {-d--:n =53]
o =,
ol 3 i
L3 o ]1"' = ; e |
b o oy ) (80P (aesah (s.20)

Fortanto & fntor E;'Ll":liz rapresents o guedrnde @ eoaalonte de secplemacte
roncrmcliscda =4 dn cortieuls eompegts, ecineidinic E_\» elarc eon o velor limito
dir 32 guando LP' = o= 0 antzo K, ¥ oo _na toeorin de Yukpwe . B

Obwvia=onte rntn:r somente o tormy con o pele de (L.21) ecrrecpendente a Bgrg
ﬁrm.'-nn de Jorm Jdems teorins Jdo neczlemonto indiretio, ¢ intedrmmente injuatifi
endc excete para ener;iow afisiesa serte do ogtalc lignde, Cheorvancs alén
dissc de gue no teoris de tipo Forod seawmo eats clc econted contribuiges de
Torei leve o constonte 2 —* 0 o que toobén represente s peasine &
aprexipacio, -ars eaergiss cuitc olevados chbtemse o [ig21) gquo 15' E _”:H =
u peaultade ususl om teoris Jos cacpon,

Com o auxilio Co rropapader (i.24) podesos cgore facilmente ealeuler © jro-
bloma de capolbamente Jde Juss partieulss 'e'.

¢ aute sstede gquo deserove o sspelincento du ducs tais perticulas eom momen
tun totel ¢ lpere) o dado per

+ : -
- ai' nfik') a*leieddlon

IL—_ -I.{ = =+ "I::J. r’*l_::] I[ } & 1 — #—L
. > = G E = '.1:-'5:..‘*' _2'_'.';- iE
T

onie S o enerpin flodes 2o estado & {L.23)

= % + -] m_ : (i.24)
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De (i.23) ebtescos fhellrerte o formo sooictitics da fungfe &u onda de duce

particulan
.| iki:l-zr} -ihiul':i} : : ilel e -‘3I
'TT:I:E! S° o ¥ @ - =f lﬁl 5 &
2 i i~y fx,-% |
fi.28)

il

Temoo 2elm eaznlhaneato simonte’s @ o 'phaso-aiift" eorrespondento @ dado

i 21 & E.-igi"!"" e
] IW ::-" = ¥ Igl

A «26)

donde vemos que & = - g gqeands || === o zue & =1 refloxc do carater punti-
forne de interacic. lotemca tanben cue UOA eXpEnote e serie de poteacien na
constante de acoplamente &7 lE“::]E dse cuantidsdea ohservaveis tais cuno sogocn
de choque da espalianente ou 'phase shifte' ndo ¢ pcosivel e= virtwde de deren
deéneie singular destoo guantidodes cono.

A opdlise Toita no copltule IV segfo 4 comperamdc o hieT.v. & un tespo, o
#.T.D. & muitos teapos e & ejusgec Jo Zothe=3alpeter jers o sroblems de utmin
iigade pede ser inedistas-nte extondids me problena de Mf-hlimﬁlntu 1"!!!50

ph“!-llﬁ.fl corrotos nos troo cnsoo cas dando esergica I ow o 3 v @

n ot
2w En- * 0= respoctivomente, porn o estodo com Jurs ¢om mooenta k e -k

=

Eate apondice sera dediende & ww cnalise nais Jetalhada do problemo do es-
tado lipgade estudade no eop. IV eagie § conm respeito 2 gun extensao pora um Ag
montus de centro de massn arbitrdric, Yomende e cut-off G (62) tal que a Far

to de interogac do hasdlteonidnn (IV.4én) sojn
e st dKyensd B, O 1;” ..... m:gm S {al.uﬁ-ua-adu‘[ulu"cuﬂ; .
1 1
- aliglali,) (Z.1)

com

2
aloy =1aw T Eﬁ],. 1
'J:I-FM !'_1
e a copdigio de mormeligogsc
L
j ciePlae = 1
o
Esta fltinn condicdo & esecliids afin Jdu snanter inolterods a eguagoe (IV.30).
Vomcs restringir parn o mcmonto no nosacss connideragion n GH‘-E] que sdo fun
gtes monotomenente decrescente Ju f.
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0 analogo de eguacos (ZV.37) forn do mistens contco de cacoa &

- 2 - | .,
fky) (2-X1-%2 -22,0, e () e Bya e 2.
T 5 % N
(5.4)

. 0 {k—l:;_-ké Eq k4 kild ky 4 kY

onde k & o nonentum total. Do (C.4) obtescs o seguinte eguagio auto-valores

" . L
—h:zfa“léﬁiﬁ“t%}{_cw :_i- hﬁ-an!Iaik-kl-hR]dI:ld]R:
~1 = 3 ; .8

o pér ma siuples transforoagic

i S I B 3 LA 'y A zh f S
s o fofe o W] & (Legd) 5y fd?-k, 2 le i
2 | “y i"..l E 1

-h A L
.E [ k' &« k) ]ﬂ:.il"li.g‘:-'j**k% (.6}

-!tfi.un-—n o

Ha segundn integral de (L.6} eodemce desde loge temer o liaite Ky —e ja que
o integral @ conversente donds

Lin aJI. ‘u-a{ﬁf—]u[-@-'—‘-gﬁlﬂ (2-k2/40 = Smo) .

|
£ - k [dfm-?-hﬂ

« BH Nz u%m) {29

rodomos agora e sortir de (2.6) con {IV.30) cbhter

f=1in [ oE - 'ﬂ‘fﬁk*@ﬂ(?‘*ﬂj PEL&’E&]E‘? ]+FL.-5-JI

i (5.0)

il-undn o hipotese de Gt :I Aserescente achanos
! dl's'lﬂ*“k*';!k”i!% q_lr/f":_.t;_- ::3[: [1:-;:!{#.12}&: (51*'_;%&12} el
1 1
‘EL ;uﬂ! fiz* ] E‘E “1:'];1::1;‘?13}
1
® gom (L.3,8) sncontromoe
et RS R SR G S RESND

1
<a lsl
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Com (B.10) ¢ o nuxilio de econsideracies dimensionais vemcs gue nqm:ﬁn de au
tovalores (5.5) sord no linite (IV.30) dads por

A~ okl = Fiz-xYan) (2.11)

com = E L€ = % o coincidindoc ecm o que foi ofirmado n:- apondice .l. oq.la.12) .
Fara uan vosta closse deo cut-offs (por exenplo G 'E‘: J = i-:;p.F ]-: 1;1
i 2 Wn""

temos o), = C correspodento 2 slindmachc des férges dependentes du 'Irﬂ.m:i.ﬂudh
For cutro lode um simples cut-off de Heaviside Nrf-kail leva & ol £ C.

A demonstragio de (D.11) pode ser fncilmente generalizeda pare o caso de
ﬁitEIl ndo decrescente mos possuindc varics pontos de maximo e minino. Keste eg
as cbhteresocs

It:%: G-‘ti} ; TR : Eﬁ{tfjf‘. J—'E. o E:%: ﬁ':{tf']: LR R :n‘l-[tf':]
(G.12)

onde os tf sa0 os pontes de saxizo ou opipimc, ¢ sinal superior correspondendo
8 pontes de pdxine ¢ ¢ infericr a Fentes de minioc.

Apresentaremcs agui um simples argumentc fisico que ilustrara o necessida-
de de utilizar ¢ processo limite (IV,3C) pars a chtongSo de resultades finitoa
no limite local do modéle sprecentade no copitule IV. Cheervemos gque tooando
11 —toc goem fEEer oo CESRO twpr.*il ~— = 0 lovar: a umn tecris divergente. Es-
tas divergoncias manifestar-se-2c nc sparecimento de wvalores infinitos parn
as quantidndes observaveis come indica a teoris das perturbagocs, mos no coms
portamento da tooris come se fosas livee {.o. secces de choque nulas, (vide
9G.4.23) de acordo com o ponts de vista meantide por diversos :utnr“':m'“]
sobro o sipnificads de wme tecris divorgente.

0 snulooente das segoes de chogue om nossc medéle pode ser conpreendido ine
terpretands o intercde entre perticulss "a' cooc send: devidn & um potencial
relative de ‘range’ J..t’Kl @ valer 11 2 (an? ?13 (vide eq. IV.34)

Em virtude do pequenc range do potencinl , jn classicasente esperarismcs
encentrar uma segac de chogue total de ordem de l.i':':f ~—=il, & primcira vista po=
derinmcs prosar quo uwm tol resultede pudesse ser ovitode moedionte o aumento da
forge do poteneisl iste & temande 5, — 1 = . Istc contule deixaria inalterado
o argumento classice, j& que classicsmonte o segic de chogue total depende
somente dos dinensdes do potencinl ¢ nfe Jde sus forgs. Fors obtor wm resultadeo
nge nulc devemos fagzer uso do ums jropriedade essencinloente quantica i.e., a
poasibilidade de ressonnneins no interier do rotencinl .

Introdurinde um wetor de fropagsgfo ne interier do potencial por

e ——
——r——r——

M= Vonn - V= E-a 2020%) (€.1)



b

@ impe'do a presonge do exctnoente uma onda dentre oo potoncinl obtomos

0 ot
it i c.%)
an

ioplisande a=

B 11 E ﬂ'.'-l — - 1 {ﬂl:]

i moncirn como o limite (S.3) @ =tingide @ ccrmcterisods pelo nossa conatan
te A en (IV.30) 1.0

Jlr'-'l I.IJ:I{HI:Ii Flm;} (Saa)
Veoos sssic gue os resultnd.s ofc nules cbtidcs _guando (IV.30) & tomoda
afo cowidos A un efeite de sroxiniisle de resson@nein , 4 sendc uvssmodida dea
ta premimidsde, o particulss corn 5 estasict sempre on ressonBnein coms pode

sor wvisto do [K.E58),
lisate apondige nsatrare.cs o exigtépedim Jo war solugde da equagao Jifercn
elzl (V.5) sctisfagends (V,10). De ecusgio

ey = SEEE (2.1)
x =1y

caleviomcn as linhas de méxime ¢ ninizo y' = O obtende

AR y Jo (2.2)
o %.J.ﬁ?.%

Tomando o derivada segunds noa pontos sstisfazondo a (Z.2) oncontramcs

1
== E '{-ﬁ t"'_a
:.“ {: i !}ﬂ - ]
Conavquentenmente (0.2} deperove linhes de mixizcs ¢ cortante qualquer solu-

gie de (2,1) que tonhs um poento [:ﬂ.rﬂl aeimn da gurva inferier {(monotonamen-
to deerceccnte) estara sespre ocima dela snra x 2% (vide fipo. 13,14)

Af funobea ;rh[r.l solucoes da (S.1) com :"-;".."I"II = 0 estic parn xz= L
entre ¢ eixo real e = linhs dop shximos inferd.: i.0. Do zone escurn das firo.
19:149,; como pode mer wisto do

-4 2 t
¥ylzl & / -?—-—d!—
e R (2.4)

chegrvandc gque (3,4) implies e y.(x) negative desalo que x5 =il .
Fortapte o Limito }in_r.;{:] = 7 (x) axiocto @ 25 o sclogio Jo (D.1) com o
s scondicio lin y(x)=0 eorpescadends a sclugho de
=T
yix) = ¢

t
[ _a" dt
LTy {2.5)

Lut & NoaSa eguagao intugrel (F.0).
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- L
¥, = log [_?1" = X = l...._, 1o — | < - K ' (Z.7)
I 4 3 . T*L J

Os dois ultimcs cascs efc reflexc do fotc Je que zo contrarie de gue ceontecin
com noasa eguagao eriginnl, y(x) coula-eo noc Jarm % & -« =08 num ponto £
nite x = K , & deveoos exclul=loa tomando I..PI{L.

De (2.3) concluimca que znrn £ 3y yix) se s roxize sssintoticnsente de

I—E + 1 , X =—tas . comportamentc semelhmnte oo dn sclugee de (V,.0.0.5).
Consideremce agura o analcc dz eguagio Ce nutc-valores (V.6) isto @ com
LZ,) i, 1, i 1]1-112 by
2 -3 a3 ¢
Xa A B s Xx=Ac log | = (Z.8])
A ]
Temando J.':LF't L4 R pomn u.;.rn:axir_mgin m guo errce relativos do crdem da
= 2
I 1egliteg 3L 3 1/11eetd 1)1 sdc sémitidos ebtescs de (Z.B)
E R
b
A Zo,e? L2 r = A% % 10g (=g ) >0 (2.9
A 2
:12 {ﬂ-.cﬂ;l o w A1%* leg (=B) = AF 12-:2
}Q,qﬂ 1 X = 121:310[; { f’_] L0
]
] 5 : 32
92 ‘;:-ﬂl.l:2 £l S as Aoa Jogoil ]' x Fats

Dentre do mesmn pregiséc exeminarcmcs ce varics metodcs de aproximagac pro-
postos no q:np.it.ulq '||'; Notemcs que n dependancin muitc froes des solugoes (Z2.8)
com K significc que sémente os ;ootos na vizinhonga da origen na equagac inte
gral (Z.1) contribuem apreciovel.m..fe pore o problema Jos aute-valorea, o gue
sipnifica gue para I:lal puito cequeno ¢ K Jda ordem de unidodoe os resultados
(E.8) tambéms se aplieam sc sroblema Jde auto-valores criginal (V.G).

A& equagio correspondente & (V.23) sera

A= '-1252 logp ( = 'i'}l L=.10)
com solugces
22 - | -
e 282 10p  (23m) £ fre® para 2% £ ¢ {(2.11)

i parte real dn sclugho (2.11) pode ser diretamen.o obtidn como mencionads no
copitule V. eq. (¥.24) i.e.

=
Eﬂ X = :"Eﬂa log ]ql'l‘- | “:} Roa™ fn!ir.a lag JJ!J- (Z.12)
i
Embora este metodo de resultsdos mpreciavel ente satisfatorics parn L?I{'.{}:
quantc no caleulo das partes renis dee sclugdes , noo suficiontemente poderc-

so para deeidir guanto 8 estebilidade ou nic das sclugles.



-
7 ]

=om afeits ole mempro indice sstabilidsds ;=pa _;r.'r w O o instebilidade wﬂ12{3|
come podemos war de (5.11).
L For cutro lede o métcde syresentsds ne equacie (V.27) leve & equagdc de

cuto=veloroes

R
5w, b lag l _Lz_{ rxl l {E.13)

Gue para t:z#' 1 o dentro dea errca couetides na cbteogho te (1.9) possul aa
mesmne solugces gue (E.8), peeeibilitendoe aseis u=e Ciscussso da eatabilidade
dns mesnas. lieste respeito ele & definitivomontes supericr me metods previo,

Bao procuramos comparor nqui ambos o8 netedos en nproximagies meds eloevos
das ja que iste somente storim sentide oo conhecemsemce as sclugdes exntas coo
precisnc maior do que a dada por {u.6).

i= Ja gue para wm volume finite o energic & dode por ume serie J;:n-{ rU-;I:I
podoriancs ponsar que mno lindte ¥= | alem 2o termo doninante ¥ i Ir{k}d K

b
térnos menos divergentes e finitcs ecoparecorinr na expressic ;j:i En"' tornen
do este cancelemento duwidoso. Je contude rii) for ums fungas suficientemente
regular ¢ :‘:'_EL*E , #ata ultinn condigie senda de qunlcuer modo necesBsria
pere que o edrie conwirje ¢ rodendc seoore seor sotiofoita medisnte o enprego
de um cut-off muxiliar, o difereage entre o morie e o terso domfasante nropor=
eicnal ao velume tendera o zerc geande o volume tender no infimito.

ii- A atengfio do outor fod recentemente chomade parn o fato oo gue 0 RoBSO
sigtome reduzide corresponde oo weado por Sethe, Jyson et M_[ﬂ}' code contu=
de os termes divergentes com o volume fornm simplessente sbandonados juntamen
te com todes ca térmos de self-enerpin. iparentemente nio fol obeervede gue
abondonar estes termos de self-enorgie do vAcus nio conatitul, come ne case
dos tormos de self-onergin das particules, wec aproximngio, j4 gue realmente
estes sdc oxatemento cancelados em enda ejungbo. 4 Unden oxedgdo & eata reprn
& o case do sistema de equncces nern um estode cue cunteém um grupe de ;.urtlt:!
las toém o8 mesnos numercs guantic.s gue ¢ vAcuo cpso om guwe o8 proprisa anpli
tudesa conterno divergbneins de veluse.

iii- Iste eapitule esta sporeinlmente contids pum trabalhe conjunto de
W. Gittinger, &. Sekine ¢ o outer, efetuadc mo sox iloock Institut flir Fhysik
angquanto o autor ern bolesdate 43 Iia,2.e.

iv= g teorin de Ceisenbor; = secaragic em mnesn ¢ eperpin de ligagdo pode
apresentor alpumas difieulisdes. 2m Gltime sndlise eontude Ltal distingdo &
questdo de uen definigfo a-rcprinde tomendo=se por bBese o8 diogromas da teo=
ric, Heste sentide o grifico 2= fipg.f rezresentz o processc basiecs que da lus
ERr no oporecimentc ds mossa oo posso juo o fi0.0 desereve o processe basice
Ge lipngioc ou essalhanentc.
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v= Egtn iqﬂiﬂlin:il foi apontada em primeirc lugar por Jouvet o mais recente
mente por varios outroas autores.

vi- Numa tecria em que o vacuo flsiece coincide com o 'Bare', & onergin fisica
de uma particula & sempre monor ou igual que a energic 'bare' quando a guanti
zngac @ feita com metrica pesitive definide.

Com efelto ederevends a' (k) |03 = e|l,k >+ ‘E e, 4, onde o8 .1 representam es-

tadeos d¢ espalbmmonto, cuje enerpis, por razces do estabilidade, deve ser

maior que a energin do estado de umn particula , ¢ tomando <0)a H n'lu-} peha=
+ - - + -

mos £0|a Ha |0 = £ 0]a Eﬂn |© =+ 0|2 hi.ntﬂ |0 3= £0]a Hnn ([ Bb."

a’lose 0 qumdn a interagac @ escri

onde fizemos uso de fato que <0|a H
int" a 2
E«+ E €y

ta sob forma de produto pnormal. For outro lade <0je 5 a” |0%= ¢ E,

onde expandimos enm tormos de nutn-ntnd.nn da hamiltoniana total. El.lbt-rlindn

ambas ae igualdadea ocbtemos o [""r"hun] * i_ ¢f [sai-ﬂbluhﬂ o gqué implica

quiEhlﬂi

vii- Moios explicitamente sles serfo escritos por extenso somente nas formulas
finais para manter as nossas exprossces mals compactas,

viii= Notemcs gue para um N finite oxistom duss raizes da eq.(IV.1l) corres-
pondends a dois estados para a particula flsica 's', Us foto semelhante i.o.
¢ aparecimento de dois estados fisicos embora cxista somente um estade ‘bare’
foi estudado nn Ref.23 ¢ também ocorre nc medélo de Les'> onde & devide mo
aparecimento d¢ um 'ghost atate'. No nusso caso o segundo estado ¢ realmente
un ‘ghost’', ja que sun normn @ pegative, desaparvconde no limite M — wo poias
sua energia tonde ao infinitoc, o que impede sua manifestagic vm processos com
energin findta.
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ix- Em geral a equagao (IV.61) deve ser simetrizadm (ou antisimetrizada) com
raspaito & umn outra chtida partiddo=sc de w=a derivagao da variavel '2'. No
nossc caso isto nic ¢ necessario ja que deixa inslterada a equagac (IV.52)
para a energia.

x= Chbeervemos que om peral existom duss maneiras de definir ¢ propapador de
um estade lipado: ou como fizemos incluindc todos ce dingromas da fig.lla o
tomandc entio climite 5: =susy W o==scdy obtendo deste modo a contribuigan de
um térmo constante correspondente no pontc da fig.lle. Ou separande a intéra
gho em duas partes, aprimecira correspondendo a interagic direta basica repre
sentada pelo ponto da fig.lle @ pmpﬁrniﬁm.l a :1',1,- a serunda a parte restan-
te tra.n-.l‘.tidu por meio do propagador :5.1 Il"l.an‘.'.i.ul"i.-‘.l;lI1r T(E) . Esta sepunda par-
te tende a zero com Z« comportando-se como um propagador usual.

0 tarmo '3'1 corresponde aseim A uma constante de subtracac eém tratamentos
dispersivos,

No limite ] == - 0 ambas as possibilidades dao obvimmonte o mesmo resulta
do, formalmonte &1 = .-"!.f < ojr ‘l"'l:lﬁ‘*{xl.lﬂlzmililﬂ S

xi - E util chamar atengic para o fato de que a contraric do que acontece em
teorins convencionais, nic podemcs variar a constonte de meoplamento 3
(Fm)
sem a0 mesmo tempo mudar as demais constantes dea teorism come por exemplo a
masaa do estado ligndo. Isto & devido ao earater unifiendo de nosso modelo
no sentide de que massas ¢ espalhaments de perticulas sfc ambos o resultads
de wmn mesma interngao fundmsontal.
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